搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hadoop大数据平台和无简并高维离散超混沌系统的加密算法

温贺平 禹思敏 吕金虎

引用本文:
Citation:

基于Hadoop大数据平台和无简并高维离散超混沌系统的加密算法

温贺平, 禹思敏, 吕金虎

Encryption algorithm based on Hadoop and non-degenerate high-dimensional discrete hyperchaotic system

Wen He-Ping, Yu Si-Min, Lü Jin-Hu
PDF
导出引用
  • 针对目前大数据环境中存在的数据安全问题,提出一种基于Hadoop大数据平台和无简并高维离散超混沌系统的加密算法.算法采用流密码对称加密方式,在Hadoop平台上读取存储于HDFS(Hadoop distributed file system)的大数据,进行分片处理和MapReduce编程后,用Map函数实现数据并行加密和解密,通过Reduce函数实现数据的合并操作并存储于HDFS.该算法具有较好的执行效率.与正李氏指数发生简并的低维混沌系统相比,无简并高维离散超混沌加密算法能提高系统安全性能,李氏指数均为正并且足够大,具有更好的统计特性,可通过严格的TESTU01测试,并行加密的密文之间互相关性很小.密钥参数众多使得估计或辨识难度增大.在密文闭环反馈条件下,具有抵御已知明文攻击和选择明文攻击的能力.
    Aiming at the data security problem in big data environment, in this paper we propose a new chaotic encryption algorithm based on both big data platform named Hadoop and non-degenerate high-dimensional discrete hyperchaotic system. The algorithm utilizes the chaotic stream cryptography and reads the data from HDFS of Hadoop platform. After fragmentation processing and MapReduce programming, the data are encrypted and decrypted by Map function in parallel. The Reduce function implements the merging operation of the data and stores them on the HDFS. The algorithm has a better execution efficiency. Compared with the low-dimensional chaotic system based encryption algorithm, the non-degenerate high-dimensional discrete chaotic system based encryption algorithm can improve the system security performance. It can pass the strict TESTU01 test with better statistical properties and make sure that the correlation with the parallel ciphertext is very small. Numerous key parameters increase the difficulty in making estimation or identification. Under the closed-loop feedback in ciphertext, it has the ability to resist the known and chosen plaintext attacks.
      通信作者: 温贺平, wenhp1019@163.com
    • 基金项目: 国家重点研发计划(批准号:2016YFB0800401)和国家自然科学基金(批准号:61532020,61671161,61172023)资助的课题.
      Corresponding author: Wen He-Ping, wenhp1019@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0800401) and the National Natural Science Foundation of China (Grant Nos. 61532020, 61671161, 61172023).
    [1]

    Mayer-Schnberger V, Kenneth C 2013 Big Data:A Revolution That Will Transform How We Live, Work and Think (London:John Murray) pp1-15

    [2]

    Feng D G, Zhang M, Li H (in Chinese)[冯登国,张敏,李昊 2014 计算机学报 37 246]

    [3]

    Meng S, Dou W, Zhang X 2014 IEEE Trans. Parall. Distr. 25 3221

    [4]

    Wang J H, Liu C Y, Fang B X (in Chinese)[王佳慧, 刘川意, 方滨兴 2016 通信学报 37 142]

    [5]

    Yang C, Lin W, Liu M 2013 IEEE International Conference on Emerging Intelligent Data and Web Technologies Xi'an, China, September 9-11, 2013 p437

    [6]

    Yu Q, Ling J (in Chinese)[余琦, 凌捷 2013 计算机工程与设计 34 2700]

    [7]

    Li M, Yang C, Tian J 2015 IEEE International Conference on Computational Intelligence & Communication Technology Ghaziabad, India, February 13-14, 2015 p4799

    [8]

    Shetty M M, Manjaiah D H 2016 IEEE International Conference on Emerging Technological Trends Kollam, India, October 21-22, 2016 p5090

    [9]

    Han D, Min L, Chen G 2016 Int. J. Bifurcat. Chaos 26 1650091

    [10]

    Liu H, Wang X, Kadir A 2014 Int. J. Nonlin. Sci. Num. 15 1565

    [11]

    Wang C F, Ding Q 2017 Acta Phys. Sin. 66 020504 (in Chinese)[王传福, 丁群 2017 物理学报 66 020504]

    [12]

    Lin Z S, Yu S M, L J H 2015 IEEE Trans. Circ. Syst. Vid. 25 1203

    [13]

    Mirzaei O, Yaghoobi M, Irani H 2012 Nonlinear Dyn. 67 557

    [14]

    Zhou Q, Wong K W, Liao X 2008 Chaos Soliton Fract. 38 1081

    [15]

    Wang X Y, Yang G, Min Z E (in Chinese)[王欣宇, 杨庚, 闵兆娥 2015 计算机应用研究 32 1757]

    [16]

    Si H W, Zhong G Y (in Chinese)[司红伟, 钟国韵 2015 计算机测量与控制 23 2475]

    [17]

    Chen Z, Yuan X, Yuan Y 2016 IEEE Trans. Circuits I 63 1464

    [18]

    Ho W H, Chou J H, Guo C Y 2010 Nonlinear Dyn. 61 29

    [19]

    Sun J, Zhao J, Wu X, Fang W, Cai Y, Xu W 2010 Phys. Lett. A 374 2816

    [20]

    Chang J F, Yang Y S, Liao T L, Yan J J 2008 Expert Syst. Appl. 35 2074

    [21]

    Zhao L, Liao X F, Xiang T, Xiao D 2010 Acta Phys. Sin. 59 1507 (in Chinese)[赵亮, 廖晓峰, 向涛, 肖迪 2010 物理学报 59 1507]

    [22]

    Termonia Y 1984 Phys. Rev. A 29 1612

    [23]

    Wang F, Zhang X Z, Shen C W, Yu S M 2012 Acta Phys. Sin. 61 190505 (in Chinese)[王芳, 张新政, 申朝文, 禹思敏 2012 物理学报 61 190505]

    [24]

    White T (Zeng D D, Transl.) 2015 Hadoop:The Definitive Guide (Beijing:Tsinghua University Press) pp80-82 (in Chinese)[怀特 (曾大聃, 译) 2015 Hadoop权威指南 (北京:清华大学出版社) 第80–82页]

  • [1]

    Mayer-Schnberger V, Kenneth C 2013 Big Data:A Revolution That Will Transform How We Live, Work and Think (London:John Murray) pp1-15

    [2]

    Feng D G, Zhang M, Li H (in Chinese)[冯登国,张敏,李昊 2014 计算机学报 37 246]

    [3]

    Meng S, Dou W, Zhang X 2014 IEEE Trans. Parall. Distr. 25 3221

    [4]

    Wang J H, Liu C Y, Fang B X (in Chinese)[王佳慧, 刘川意, 方滨兴 2016 通信学报 37 142]

    [5]

    Yang C, Lin W, Liu M 2013 IEEE International Conference on Emerging Intelligent Data and Web Technologies Xi'an, China, September 9-11, 2013 p437

    [6]

    Yu Q, Ling J (in Chinese)[余琦, 凌捷 2013 计算机工程与设计 34 2700]

    [7]

    Li M, Yang C, Tian J 2015 IEEE International Conference on Computational Intelligence & Communication Technology Ghaziabad, India, February 13-14, 2015 p4799

    [8]

    Shetty M M, Manjaiah D H 2016 IEEE International Conference on Emerging Technological Trends Kollam, India, October 21-22, 2016 p5090

    [9]

    Han D, Min L, Chen G 2016 Int. J. Bifurcat. Chaos 26 1650091

    [10]

    Liu H, Wang X, Kadir A 2014 Int. J. Nonlin. Sci. Num. 15 1565

    [11]

    Wang C F, Ding Q 2017 Acta Phys. Sin. 66 020504 (in Chinese)[王传福, 丁群 2017 物理学报 66 020504]

    [12]

    Lin Z S, Yu S M, L J H 2015 IEEE Trans. Circ. Syst. Vid. 25 1203

    [13]

    Mirzaei O, Yaghoobi M, Irani H 2012 Nonlinear Dyn. 67 557

    [14]

    Zhou Q, Wong K W, Liao X 2008 Chaos Soliton Fract. 38 1081

    [15]

    Wang X Y, Yang G, Min Z E (in Chinese)[王欣宇, 杨庚, 闵兆娥 2015 计算机应用研究 32 1757]

    [16]

    Si H W, Zhong G Y (in Chinese)[司红伟, 钟国韵 2015 计算机测量与控制 23 2475]

    [17]

    Chen Z, Yuan X, Yuan Y 2016 IEEE Trans. Circuits I 63 1464

    [18]

    Ho W H, Chou J H, Guo C Y 2010 Nonlinear Dyn. 61 29

    [19]

    Sun J, Zhao J, Wu X, Fang W, Cai Y, Xu W 2010 Phys. Lett. A 374 2816

    [20]

    Chang J F, Yang Y S, Liao T L, Yan J J 2008 Expert Syst. Appl. 35 2074

    [21]

    Zhao L, Liao X F, Xiang T, Xiao D 2010 Acta Phys. Sin. 59 1507 (in Chinese)[赵亮, 廖晓峰, 向涛, 肖迪 2010 物理学报 59 1507]

    [22]

    Termonia Y 1984 Phys. Rev. A 29 1612

    [23]

    Wang F, Zhang X Z, Shen C W, Yu S M 2012 Acta Phys. Sin. 61 190505 (in Chinese)[王芳, 张新政, 申朝文, 禹思敏 2012 物理学报 61 190505]

    [24]

    White T (Zeng D D, Transl.) 2015 Hadoop:The Definitive Guide (Beijing:Tsinghua University Press) pp80-82 (in Chinese)[怀特 (曾大聃, 译) 2015 Hadoop权威指南 (北京:清华大学出版社) 第80–82页]

  • [1] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究. 物理学报, 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [2] 曹小群. 基于高斯伪谱方法的混沌系统最优控制. 物理学报, 2013, 62(23): 230505. doi: 10.7498/aps.62.230505
    [3] 林剑, 许力. 基于混合生物地理优化的混沌系统参数估计. 物理学报, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [4] 杨锦辉, 宋君强. 混沌系统平均初始误差增长饱和特性研究. 物理学报, 2012, 61(17): 170511. doi: 10.7498/aps.61.170511
    [5] 李春来, 禹思敏, 罗晓曙. 一个新的混沌系统的构建与实现. 物理学报, 2012, 61(11): 110502. doi: 10.7498/aps.61.110502
    [6] 周小勇. 一个新混沌系统及其电路仿真. 物理学报, 2012, 61(3): 030504. doi: 10.7498/aps.61.030504
    [7] 曹小群, 宋君强, 张卫民, 赵军, 张理论. 基于变分方法的混沌系统参数估计. 物理学报, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [8] 冯朝文, 蔡理, 康强, 张立森. 一种新的三维自治混沌系统. 物理学报, 2011, 60(3): 030503. doi: 10.7498/aps.60.030503
    [9] 王开, 裴文江, 周建涛, 张毅峰, 周思源. 一类时空混沌加解密系统的安全分析. 物理学报, 2011, 60(7): 070503. doi: 10.7498/aps.60.070503
    [10] 唐良瑞, 李静, 樊冰, 翟明岳. 新三维混沌系统及其电路仿真. 物理学报, 2009, 58(2): 785-793. doi: 10.7498/aps.58.785
    [11] 李文林, 宋运忠. 不确定非线性系统混沌反控制. 物理学报, 2008, 57(1): 51-55. doi: 10.7498/aps.57.51
    [12] 张建雄, 唐万生, 徐 勇. 一个新的三维混沌系统. 物理学报, 2008, 57(11): 6799-6807. doi: 10.7498/aps.57.6799
    [13] 向 菲, 丘水生. 基于混沌系统互扰的流密码设计. 物理学报, 2008, 57(10): 6132-6138. doi: 10.7498/aps.57.6132
    [14] 徐淑奖, 王继志. 一类改进的混沌迭代加密算法. 物理学报, 2008, 57(1): 37-41. doi: 10.7498/aps.57.37
    [15] 陈 晶, 张天平, 闾立新. 具有死区非线性输入的一类不确定混沌系统的自适应控制. 物理学报, 2007, 56(2): 686-692. doi: 10.7498/aps.56.686
    [16] 杨东升, 张化光, 李爱平, 孟子怡. 基于模糊模型的不同结构的混沌系统同步. 物理学报, 2007, 56(6): 3121-3126. doi: 10.7498/aps.56.3121
    [17] 罗润梓. 一个新混沌系统的脉冲控制与同步. 物理学报, 2007, 56(10): 5655-5660. doi: 10.7498/aps.56.5655
    [18] 高 飞, 童恒庆. 基于改进粒子群优化算法的混沌系统参数估计方法. 物理学报, 2006, 55(2): 577-582. doi: 10.7498/aps.55.577
    [19] 王杰智, 陈增强, 袁著祉. 一个新的混沌系统及其性质研究. 物理学报, 2006, 55(8): 3956-3963. doi: 10.7498/aps.55.3956
    [20] 卢志刚, 于灵慧, 柳晓菁, 高美静, 吴士昌. 克服扰动的混沌逆控制同步系统. 物理学报, 2002, 51(10): 2211-2215. doi: 10.7498/aps.51.2211
计量
  • 文章访问数:  6752
  • PDF下载量:  400
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-05
  • 修回日期:  2017-07-29
  • 刊出日期:  2017-12-05

/

返回文章
返回