搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用金刚石氮-空位色心精确测量弱磁场的探索

李路思 李红蕙 周黎黎 杨炙盛 艾清

引用本文:
Citation:

利用金刚石氮-空位色心精确测量弱磁场的探索

李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清

Measurement of weak static magnetic field with nitrogen-vacancy color center

Li Lu-Si, Li Hong-Hui, Zhou Li-Li, Yang Zhi-Sheng, Ai Qing
PDF
导出引用
  • 基于金刚石氮-空位色心对精确测量微弱静磁场进行了探索.金刚石氮-空位色心电子自旋的退相干时间高度依赖于外磁场,而不同的退相干特征时间对磁场的灵敏度不同.对金刚石氮-空位色心电子自旋在不同强度外磁场下的退相干过程进行模拟,得到不同退相干特征时间与磁场大小的高准确度关系,提出了基于响应度最高的退相干特征时间测量静态弱磁场大小和方向的方法,并分析了该方法测量静态弱磁场的灵敏度,证明该方法的测量灵敏度比一般磁场测量仪器更高.
    The accurate measurement of the weak geomagnetic field is of significance for different disciplines. It can provide sufficient navigation information for both human beings and different natural animal species. Inspired by avian magnetoreception models, we consider the feasibility of utilizing quantum coherence phenomena to measure weak static magnetic fields. We propose an experimentally feasible scheme to measure weak static magnetic fields with nitrogen-vacancy color center in diamond. Nitrogen-vacancy color centers are regarded as an ideal platform to study quantum science as a result of its long coherence time up to a millisecond timescale at room temperature. In a high-purity diamond, the hyperfine interaction with the surrounding 13C nuclear spins dominates the decoherence process. In this paper, by the cluster-correlation expansion, we numerically simulate the decoherence process between|0⟩ ightangle and|+1⟩ ightangle states of the individual nitrogen-vacancy color center electron spin in the 13C nuclear-spin baths with various magnitudes of external magnetic fields. By applying the Hahn echo pulse sequence to the system, we obtain the coherence of the nitrogen-vacancy color center electron spin as a function of total evolution time and magnetic field. Furthermore, we obtain the high-accuracy relationship between the three decoherence-characteristic timescales, i.e., TW, TR, T2, and magnetic field B. Finally, we draw a conclusion that TR has the highest sensitivity to the magnetic field in the three timescales. Thus, for a certain nitrogen-vacancy color center, TR can be the scale for the magnitude of the magnetic field, or rather, the component along the nitrogen-vacancy electronic spin axis. When measuring an unknown magnetic field, we adjust the nitrogen-vacancy axis to the three mutually orthogonal directions respectively. By this means, we obtain the three components of the magnetic field and thus the magnitude and direction of the actual magnetic field. The accuracy can reach as high as 60 nT·Hz-1/2, and can be further improved by using an ensemble of nitrogen-vacancy color centers or diamond crystals purified with 12C atoms. In summary, our scheme may provide an alternative method of accurately measuring the weak geomagnetic field by the nitrogen-vacancy color center under ambient condition.
      通信作者: 艾清, aiqing@bnu.edu.cn
    • 基金项目: 北京师范大学本科生科研训练与创新创业项目、国家自然科学基金青年科学基金(批准号:11505007)、清华大学低维量子物理国家重点实验室开放研究基金(批准号:KF201502)资助的课题.
      Corresponding author: Ai Qing, aiqing@bnu.edu.cn
    • Funds: Project supported by the Undergraduate Research Foundation of Beijing Normal University, China, the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11505007), and the Open Research Fund of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, China (Grant No. KF201502).
    [1]

    Kirtley J R 2010 Rep. Prog. Phys. 73 126501

    [2]

    Lenz J, Edelstein S 2006 IEEE Sens. J. 6 631

    [3]

    Oukhanski N, Stolz R, Zakosarenko V, Meyer H G 2002 Physica C 368 166

    [4]

    Zhang X C, Zhao G P, Xia J 2013 Acta Phys. Sin. 62 218702 (in Chinese)[张溪超, 赵国平, 夏静 2013 物理学报 62 218702]

    [5]

    Phillips J B, Deutschlander M E, Freake M J, Borland S C 2001 J. Exp. Biol. 204 2543

    [6]

    Liang C H, Chuang C L, Jiang J A, Yang E C 2016 Sci. Rep. 6 23657

    [7]

    Cai C Y, Ai Q, Quan H T, Sun C P 2012 Phys. Rev. A 85 022315

    [8]

    Rodgers C T, Hore P J 2009 Proc. Natl. Acad. Sci. USA 106 353

    [9]

    Kominis I K 2009 Phys. Rev. E 80 056115

    [10]

    Cai J M, Guerreschi G G, Briegel H J 2010 Phys. Rev. Lett. 104 220502

    [11]

    Yang L P, Ai Q, Sun C P 2012 Phys. Rev. A 85 032707

    [12]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [13]

    Dobrovitski V V, Fuchs G D, Falk A L, Santori C, Awschalom D D 2013 Annu. Rev. Condens. Matter Phys. 4 23

    [14]

    Neumann P, Beck J, Steiner M, et al. 2010 Science 329 542

    [15]

    Liu G Q, Xing J, Ma W L, Li C H, Wang P, Po H C, Liu R B, Pan X Y 2017 Phys. Rev. Lett. 118 150504

    [16]

    Bar-Gill N, Pham L M, Jarmola A, Budker D, Walsworth R L 2013 Nat. Commun. 4 1743

    [17]

    Tao M J, Hua M, Ai Q, Deng F G 2015 Phys. Rev. A 91 062325

    [18]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 45

    [19]

    Zhao N, Honert J, Schmid B, Klas M, Isoya J, Markham M, Twitchen D, Jelezko F, Liu R B, Fedder H, Wrachtrup J 2012 Nat. Nanotech. 7 657

    [20]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev-Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644

    [21]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [22]

    Shi F, Zhang Q, Wang P F, Sun H B, Wang J R, Rong X, Chen M, Ju C Y, Reinhard F, Chen H W, Wrachtrup J, Wang J F, Du J F 2015 Science 347 1135

    [23]

    Zhao N, Ho S W, Liu R B 2012 Phys. Rev. B 85 115303

    [24]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常彦春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]

    [25]

    Huang P, Kong X, Zhao N, Shi F Z, Wang P F, Rong X, Liu R B, Du J F 2011 Nat. Commun. 2 570

    [26]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C 1997 Science 276 2012

    [27]

    Childress L, Taylor J M, Sørensen A S, Lukin M D 2006 Phys. Rev. Lett. 96 070504

    [28]

    Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93 052324

    [29]

    Yang W, Liu R B 2009 Phys. Rev. B 79 115320

    [30]

    Stanwix P L, Pham L M, Maze J R, Le Sage D, Yeung T K, Cappellaro P, Hemmer P R, Yacoby A, Lukin M D, Walsworth R L 2010 Phys. Rev. B 82 201201

    [31]

    Chen X D, Zou C L, Gong Z J, Dong C H, Guo G C, Sun F W 2015 Light-Sci. Appl. 4 1

    [32]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810

    [33]

    Ishikawa T, Fu K M C, Santori C, Acosta V M, Beausoleil R G, Watanabe H, Shikata S, Itoh K M 2012 Nano Lett. 12 2083

    [34]

    Zhao L, Yan T J 2013 Acta Physica Sin. 62 067702 (in Chinese)[赵龙, 颜廷君 2013 物理学报 62 067702]

  • [1]

    Kirtley J R 2010 Rep. Prog. Phys. 73 126501

    [2]

    Lenz J, Edelstein S 2006 IEEE Sens. J. 6 631

    [3]

    Oukhanski N, Stolz R, Zakosarenko V, Meyer H G 2002 Physica C 368 166

    [4]

    Zhang X C, Zhao G P, Xia J 2013 Acta Phys. Sin. 62 218702 (in Chinese)[张溪超, 赵国平, 夏静 2013 物理学报 62 218702]

    [5]

    Phillips J B, Deutschlander M E, Freake M J, Borland S C 2001 J. Exp. Biol. 204 2543

    [6]

    Liang C H, Chuang C L, Jiang J A, Yang E C 2016 Sci. Rep. 6 23657

    [7]

    Cai C Y, Ai Q, Quan H T, Sun C P 2012 Phys. Rev. A 85 022315

    [8]

    Rodgers C T, Hore P J 2009 Proc. Natl. Acad. Sci. USA 106 353

    [9]

    Kominis I K 2009 Phys. Rev. E 80 056115

    [10]

    Cai J M, Guerreschi G G, Briegel H J 2010 Phys. Rev. Lett. 104 220502

    [11]

    Yang L P, Ai Q, Sun C P 2012 Phys. Rev. A 85 032707

    [12]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1

    [13]

    Dobrovitski V V, Fuchs G D, Falk A L, Santori C, Awschalom D D 2013 Annu. Rev. Condens. Matter Phys. 4 23

    [14]

    Neumann P, Beck J, Steiner M, et al. 2010 Science 329 542

    [15]

    Liu G Q, Xing J, Ma W L, Li C H, Wang P, Po H C, Liu R B, Pan X Y 2017 Phys. Rev. Lett. 118 150504

    [16]

    Bar-Gill N, Pham L M, Jarmola A, Budker D, Walsworth R L 2013 Nat. Commun. 4 1743

    [17]

    Tao M J, Hua M, Ai Q, Deng F G 2015 Phys. Rev. A 91 062325

    [18]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 45

    [19]

    Zhao N, Honert J, Schmid B, Klas M, Isoya J, Markham M, Twitchen D, Jelezko F, Liu R B, Fedder H, Wrachtrup J 2012 Nat. Nanotech. 7 657

    [20]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev-Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644

    [21]

    Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J 2008 Nature 455 648

    [22]

    Shi F, Zhang Q, Wang P F, Sun H B, Wang J R, Rong X, Chen M, Ju C Y, Reinhard F, Chen H W, Wrachtrup J, Wang J F, Du J F 2015 Science 347 1135

    [23]

    Zhao N, Ho S W, Liu R B 2012 Phys. Rev. B 85 115303

    [24]

    Liu D Q, Chang Y C, Liu G Q, Pan X Y 2013 Acta Phys. Sin. 62 164208 (in Chinese)[刘东奇, 常彦春, 刘刚钦, 潘新宇 2013 物理学报 62 164208]

    [25]

    Huang P, Kong X, Zhao N, Shi F Z, Wang P F, Rong X, Liu R B, Du J F 2011 Nat. Commun. 2 570

    [26]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C 1997 Science 276 2012

    [27]

    Childress L, Taylor J M, Sørensen A S, Lukin M D 2006 Phys. Rev. Lett. 96 070504

    [28]

    Song X K, Ai Q, Qiu J, Deng F G 2016 Phys. Rev. A 93 052324

    [29]

    Yang W, Liu R B 2009 Phys. Rev. B 79 115320

    [30]

    Stanwix P L, Pham L M, Maze J R, Le Sage D, Yeung T K, Cappellaro P, Hemmer P R, Yacoby A, Lukin M D, Walsworth R L 2010 Phys. Rev. B 82 201201

    [31]

    Chen X D, Zou C L, Gong Z J, Dong C H, Guo G C, Sun F W 2015 Light-Sci. Appl. 4 1

    [32]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810

    [33]

    Ishikawa T, Fu K M C, Santori C, Acosta V M, Beausoleil R G, Watanabe H, Shikata S, Itoh K M 2012 Nano Lett. 12 2083

    [34]

    Zhao L, Yan T J 2013 Acta Physica Sin. 62 067702 (in Chinese)[赵龙, 颜廷君 2013 物理学报 62 067702]

  • [1] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [2] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [3] 李廷伟, 荣星, 杜江峰. 固态单自旋量子控制研究进展. 物理学报, 2022, 71(6): 060304. doi: 10.7498/aps.71.20211808
    [4] 沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏. 金刚石氮-空位色心的原子自旋声子耦合机理. 物理学报, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [5] 冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊. 固态金刚石氮空位色心光学调控优化. 物理学报, 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [6] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [7] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [8] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [9] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感. 物理学报, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [10] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [11] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [12] 任益充, 范洪义. Ket-Bra纠缠态方法研究含时外场中与热库耦合Qubit的演化. 物理学报, 2016, 65(11): 110301. doi: 10.7498/aps.65.110301
    [13] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [14] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究. 物理学报, 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [15] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应. 物理学报, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [16] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干. 物理学报, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [17] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [18] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [19] 刘绍鼎, 程木田, 周慧君, 李耀义, 王取泉, 薛其坤. 双激子和浸润层泄漏以及俄歇俘获对量子点Rabi振荡衰减的影响. 物理学报, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [20] 王 丽, 胡响明. 耦合场线宽:抑制电磁诱导吸收. 物理学报, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
计量
  • 文章访问数:  3845
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-28
  • 修回日期:  2017-08-12
  • 刊出日期:  2017-12-05

利用金刚石氮-空位色心精确测量弱磁场的探索

  • 1. 北京师范大学物理学系, 北京 100875
  • 通信作者: 艾清, aiqing@bnu.edu.cn
    基金项目: 北京师范大学本科生科研训练与创新创业项目、国家自然科学基金青年科学基金(批准号:11505007)、清华大学低维量子物理国家重点实验室开放研究基金(批准号:KF201502)资助的课题.

摘要: 基于金刚石氮-空位色心对精确测量微弱静磁场进行了探索.金刚石氮-空位色心电子自旋的退相干时间高度依赖于外磁场,而不同的退相干特征时间对磁场的灵敏度不同.对金刚石氮-空位色心电子自旋在不同强度外磁场下的退相干过程进行模拟,得到不同退相干特征时间与磁场大小的高准确度关系,提出了基于响应度最高的退相干特征时间测量静态弱磁场大小和方向的方法,并分析了该方法测量静态弱磁场的灵敏度,证明该方法的测量灵敏度比一般磁场测量仪器更高.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回