搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中间测量对受驱单量子比特统计复杂度的影响

巩龙延 杨慧 赵生妹

引用本文:
Citation:

中间测量对受驱单量子比特统计复杂度的影响

巩龙延, 杨慧, 赵生妹

Influence of intermediated measurements on quantum statistical complexity of single driven qubit

Gong Long-Yan, Yang Hui, Zhao Sheng-Mei
PDF
HTML
导出引用
  • 最近, 基于量子信息理论的统计复杂度引起了人们的关注. 在噪声环境下, 一个受外界驱动的单量子比特系统具有丰富的动力学行为. 本文利用Lindblad方程, 在Born-Markov近似下, 研究$N$次中间量子测量后, 在系统演化的最后时刻$\tau$, 末态的统计复杂度$C$. 研究发现: 在$\tau$由0变大的过程中, $C$从0开始, 先增大到最大值, 然后减小, 直到再趋近于0; $N$ 较小时, $C$伴随着明显的不规则振荡现象, 振幅随$\tau$逐渐减小; $N$越大, $C$$\tau$的变化趋势越接近无中间测量时的变化趋势. 研究结果给量子态的操控提供了一定的理论参考.
    Recently, quantum statistical complexity based quantum information theory has received much attraction. Quantum measurements can extract the information from a system and may change its state. At the same time, the method of measuring multiple quantum is an important quantum control technique in quantum information science and condensed matter physics. The main goal of this work is to investigate the influence of multiple quantum measurements on quantum statistical complexity. It is a fundamental problem to understand, characterize, and measure the complexity of a system. To address the issue, a damped and linearly driven two-level system (qubit) is taken for example. The driving amplitude and dephasing intensity are considered. By using the Lindblad equation and the Born-Markov approximation, the time evolution of the system can be obtained. Under multiple intermediated measurements, the system has a complex dynamic behavior. Quantum statistical complexity $C$ at the last moment $\tau$ is studied in detail. The results show that on the whole, $C$ first increases from zero to a maximal value with $\tau$ increasing, then decreases, and finally it approaches to zero. At first, the system is in a pure state and $C=0$. Finally, the system is in a maximally mixed state due to the interaction with the environment and $C=0$ again. When the number of measurements $N$ is relatively small, $C$ fluctuates with $\tau$ increasing, but when $N$ is relatively large, the fluctuations disappear. Due to the quantum Zeno effect, as $N$ is larger, the variation of $C$ with $\tau$ is similar to that for the case of no intermediated measurement. Because of the quantum superposition principle, uncertainty principle, and quantum collapse, quantum measurement can disturb the system, so quantum statistical complexity $C$ exhibits a complex behavior. In the quantum realm, the complexity of a system can be transformed into a resource. The quantum state needs creating, operating, or measuring. Therefore, all our results provide a theoretical reference for the optimal controlling of quantum information process and condensed matter physics. At the same time, the number of the degrees of freedom is two for the damped and linearly driven two-level system, so this system is simple and easy to study. The complexity of such a system can be tailored by properly tuning the driving strength. Therefore, the model can be used as a typical example to study the quantum statistical complexity.
      通信作者: 巩龙延, lygong@njupt.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61271238, 61475075)资助的课题.
      Corresponding author: Gong Long-Yan, lygong@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238, 61475075)
    [1]

    Sen K D (Editor) 2011 Statistical Complexity: Applications in Electronic Structure (1st Ed.) (Netherlands: Springer) pp vii–xi

    [2]

    郝柏林 2001 物理 30 466Google Scholar

    Hao B L 2001 Physics 30 466Google Scholar

    [3]

    冯端, 金国钧 2003 凝聚态物理学 (上卷) (北京: 高等教育出版社) 第4−8页

    Feng D, Jin G J 2003 Condensed Matter Physics (Vol. 1) (Beijing: Higher Education Press) pp4−8 (in Chinese)

    [4]

    Kadanoff L P 1991 Physics Today 44 9

    [5]

    Boffetta G, Cencini M, Falcioni M, Vulpiani A 2002 Phys. Rep. 356 367Google Scholar

    [6]

    Kolmogorov A N 1965 Probl. Inform. Transm. 1 1

    [7]

    Lempel A, Ziv J 1976 IEEE Trans. Inform. Theor. 22 75Google Scholar

    [8]

    López-Ruíz R, Mancini H L, Calbet X 1995 Phys. Lett. A 209 321Google Scholar

    [9]

    Shiner J S, Davison M, Landsberg P T 1999 Phys. Rev. E 59 1459Google Scholar

    [10]

    Cesário A T, Ferreira D L B, Debarba T, Iemini F, Maciel T O, Vianna R O 2020 https://arxiv.org/abs/2002.01590

    [11]

    解思深 2018 物理学报 67 220301Google Scholar

    Xie S S 2018 Acta Phys. Sin. 67 220301Google Scholar

    [12]

    Friedenberger A, Lutz E 2017 Phys. Rev. A 95 022101Google Scholar

    [13]

    Friedenberger A, Lutz E 2018 https://arxiv.org/abs/1805.11882

    [14]

    Bojer M, Friedenberger A, Lutz E 2019 J. Phys. Commun. 3 065003Google Scholar

    [15]

    赵小新 2019 硕士学位论文 (南京: 南京邮电大学)

    Zhao X X 2019 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [16]

    Alter O, Yamamoto T, 2001 Quantum Measurement of a Single System (1st Ed.) (New York: Wiley Press) pp1−6

    [17]

    Müller M M, Gherardini S, Smerzi A, Caruso F 2016 Phys. Rev. A 94 042322Google Scholar

    [18]

    Wiseman H M, Milburn G J 2009 Quantum measurement and control (1st Ed.) (Cambridge: Cambridge University Press) pp1−25

    [19]

    Bernard D, Jin T, Shpielberg O 2018 Europhys. Lett. 121 60006Google Scholar

    [20]

    Misra B, Sudarshan E C 1977 J. Math. Phys. 18 756Google Scholar

    [21]

    胡要花, 吴琴 2019 物理学报 68 230303Google Scholar

    Hu Y H, Wu Q 2019 Acta Phys. Sin. 68 230303Google Scholar

    [22]

    Cai Y, Le H N, Scarani V 2015 Ann. Phys. 527 684Google Scholar

    [23]

    Ivanov D A, Gurvits L 2020 Phys. Rev. A 101 012303Google Scholar

  • 图 1  中间测量次数不同时约化冯·诺依曼熵$S$随最后演化时刻$\tau$的变化曲线 (a)$N=0, 1, 2, 4$; (b)$N=0, 10, 10^2, 10^3, 10^4$, 外界驱动强度$\kappa=0.95$, 退相位噪声强度$\gamma=0.2$

    Fig. 1.  The reduced von Neumann entropy $S$ varying with last moment $\tau$, where (a)$N=0, 1, 2, 4$, (b)$N=0, 10, 10^2, 10^3, 10^4$, the driving amplitude $\kappa=0.95$, the dephasing intensity $\gamma=0.2$.

    图 2  中间测量次数不同时约化失衡度D随最后演化时刻$\tau$的变化曲线 (a)$N=0, 1, 2, 4$; (b)$N=0, 10, 10^2, 10^3, 10^4$, 外界驱动强度$\kappa=0.95$, 退相位噪声强度$\gamma=0.2$

    Fig. 2.  The reduced disequilibrium $D$ varying with last moment $\tau$, where (a)$N=0, 1, 2, 4$, (b)$N=0, 10, 10^2, 10^3, 10^4$, the driving amplitude $\kappa=0.95$, the dephasing intensity $\gamma=0.2$.

    图 3  中间测量次数不同时量子统计复杂度$C$随最后演化时刻$\tau$的变化曲线 (a)$N=0, 1, 2, 4$; (b)$N=0, 10, 10^2, 10^3, 10^4$, 外界驱动强度$\kappa=0.95$, 退相位噪声强度$\gamma=0.2$

    Fig. 3.  The quantum statistical complexity $C$ varying with last moment $\tau$, where (a)$N=0, 1, 2, 4$, (b)$N=0, 10, 10^2, 10^3, 10^4$, the driving amplitude $\kappa=0.95$, the dephasing intensity $\gamma=0.2$.

    图 4  中间测量次数不同时量子统计复杂度$C$随最后演化时刻$\tau$及外界驱动强度$\kappa$ 的变化 (a)$N=0$; (b)$N=4$; (c)$N=1000$, 退相位噪声强度$\gamma=0.2$

    Fig. 4.  The quantum statistical complexity $C$ varying with last moment $\tau$ and driving amplitude $\kappa$, where (a)$N=0$, (b)$N=4$, (b)$N=1000$, and the dephasing intensity $\gamma=0.2$.

  • [1]

    Sen K D (Editor) 2011 Statistical Complexity: Applications in Electronic Structure (1st Ed.) (Netherlands: Springer) pp vii–xi

    [2]

    郝柏林 2001 物理 30 466Google Scholar

    Hao B L 2001 Physics 30 466Google Scholar

    [3]

    冯端, 金国钧 2003 凝聚态物理学 (上卷) (北京: 高等教育出版社) 第4−8页

    Feng D, Jin G J 2003 Condensed Matter Physics (Vol. 1) (Beijing: Higher Education Press) pp4−8 (in Chinese)

    [4]

    Kadanoff L P 1991 Physics Today 44 9

    [5]

    Boffetta G, Cencini M, Falcioni M, Vulpiani A 2002 Phys. Rep. 356 367Google Scholar

    [6]

    Kolmogorov A N 1965 Probl. Inform. Transm. 1 1

    [7]

    Lempel A, Ziv J 1976 IEEE Trans. Inform. Theor. 22 75Google Scholar

    [8]

    López-Ruíz R, Mancini H L, Calbet X 1995 Phys. Lett. A 209 321Google Scholar

    [9]

    Shiner J S, Davison M, Landsberg P T 1999 Phys. Rev. E 59 1459Google Scholar

    [10]

    Cesário A T, Ferreira D L B, Debarba T, Iemini F, Maciel T O, Vianna R O 2020 https://arxiv.org/abs/2002.01590

    [11]

    解思深 2018 物理学报 67 220301Google Scholar

    Xie S S 2018 Acta Phys. Sin. 67 220301Google Scholar

    [12]

    Friedenberger A, Lutz E 2017 Phys. Rev. A 95 022101Google Scholar

    [13]

    Friedenberger A, Lutz E 2018 https://arxiv.org/abs/1805.11882

    [14]

    Bojer M, Friedenberger A, Lutz E 2019 J. Phys. Commun. 3 065003Google Scholar

    [15]

    赵小新 2019 硕士学位论文 (南京: 南京邮电大学)

    Zhao X X 2019 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese)

    [16]

    Alter O, Yamamoto T, 2001 Quantum Measurement of a Single System (1st Ed.) (New York: Wiley Press) pp1−6

    [17]

    Müller M M, Gherardini S, Smerzi A, Caruso F 2016 Phys. Rev. A 94 042322Google Scholar

    [18]

    Wiseman H M, Milburn G J 2009 Quantum measurement and control (1st Ed.) (Cambridge: Cambridge University Press) pp1−25

    [19]

    Bernard D, Jin T, Shpielberg O 2018 Europhys. Lett. 121 60006Google Scholar

    [20]

    Misra B, Sudarshan E C 1977 J. Math. Phys. 18 756Google Scholar

    [21]

    胡要花, 吴琴 2019 物理学报 68 230303Google Scholar

    Hu Y H, Wu Q 2019 Acta Phys. Sin. 68 230303Google Scholar

    [22]

    Cai Y, Le H N, Scarani V 2015 Ann. Phys. 527 684Google Scholar

    [23]

    Ivanov D A, Gurvits L 2020 Phys. Rev. A 101 012303Google Scholar

  • [1] 张治达, 易康源, 陈远珍, 燕飞. 多能级系统中的动力学解耦. 物理学报, 2023, 72(10): 100305. doi: 10.7498/aps.72.20222398
    [2] 田礼漫, 温永立, 王云飞, 张善超, 李建锋, 杜镜松, 颜辉, 朱诗亮. 路径积分传播子测量的研究进展. 物理学报, 2023, 72(20): 200305. doi: 10.7498/aps.72.20230902
    [3] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [4] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制. 物理学报, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [5] 温永立, 张善超, 颜辉, 朱诗亮. 无指针δ-淬火直接测量法测量量子密度矩阵. 物理学报, 2021, 70(11): 110301. doi: 10.7498/aps.70.20210269
    [6] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [7] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [8] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [9] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰. 基于金刚石NV色心的纳米尺度磁场测量和成像技术. 物理学报, 2018, 67(13): 130701. doi: 10.7498/aps.67.20180243
    [10] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [11] 任益充, 范洪义. Ket-Bra纠缠态方法研究含时外场中与热库耦合Qubit的演化. 物理学报, 2016, 65(11): 110301. doi: 10.7498/aps.65.110301
    [12] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [13] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应. 物理学报, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [14] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干. 物理学报, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [15] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [16] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [17] 刘绍鼎, 程木田, 周慧君, 李耀义, 王取泉, 薛其坤. 双激子和浸润层泄漏以及俄歇俘获对量子点Rabi振荡衰减的影响. 物理学报, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [18] 黄仙山, 谢双媛, 羊亚平. 量子测量对三维光子晶体中Λ型原子动力学性质的影响. 物理学报, 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [19] 胡学宁, 李新奇. 量子点接触对单电子量子态的量子测量. 物理学报, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
    [20] 王 丽, 胡响明. 耦合场线宽:抑制电磁诱导吸收. 物理学报, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
计量
  • 文章访问数:  5168
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 修回日期:  2020-07-05
  • 上网日期:  2020-11-30
  • 刊出日期:  2020-12-05

/

返回文章
返回