-
量子纠缠态的量子非局域关联特性在当前量子信息和量子计算协议中起着重要的作用. 然而, 任何实际的物理系统都不可避免地与周围环境相互作用, 使得在量子信道中的传输过程中, 量子态会发生相干性退化, 进而弱化量子态的量子非局域关联特性. 本文利用一种基于Hardy-type佯谬的高概率量子非局域关联检验方案, 分别研究了两比特偏振纠缠态在经过振幅阻尼信道(ADC)、相位阻尼信道(PDC)和退极化阻尼信道(DC)后的量子非局域关联检验情况. 研究结果表明, DC传输信道对量子态的量子非局域关联检验特性影响较大, 而PDC传输信道对量子态的量子非局域关联检验特性影响较小. 最后, 本文还给出了利用弱测量结合弱测量反转操作克服ADC退相干时, 偏振纠缠态成功进行量子非局域关联检验的条件. 结果表明, 当弱测量的强度增大时, 可有效地降低ADC退相干效应对偏振纠缠态成功进行量子非局域关联检验造成的影响.The quantum nonlocal correlation of quantum states plays an important role in the quantum information and quantum computing protocols. However, during the transmission of entangled states in the quantum channel, they will inevitably interact with the environment, resulting in the degradation of the coherence and then weakening the quantum nonlocal correlation. Using a high probability quantum nonlocal correlation testing scheme based on Hardy-type paradox, in this paper we investigate the quantum nonlocal correlation testing of two-qubit polarization entangled states when they transmit through amplitude damping channel (ADC), phase damping channel (PDC) and depolarization damping channel (DC). The results show that DC has a great influence on the quantum nonlocal correlation testing, while PDC has little influence on the quantum nonlocal correlation testing of quantum states. Finally, this paper also gives condition for the successful quantum nonlocal correlation testing of ADC under weak measurement and quantum weak measurement reversal operation. The results show that when the intensity of weak measurement increases, the influence of ADC decoherence effect on quantum nonlocal correlation testing can be effectively reduced.
-
Keywords:
- quantum nonlocal correlation /
- amplitude damping /
- phase damping /
- depolarization damping /
- weak measurement /
- quantum weak measurement reversal
[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar
[3] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp17–60
[4] Masanes L, Pironio S, Acin A 2011 Nat. Commun. 2 238Google Scholar
[5] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar
[6] Bennett C H, Brassard G 2014 Theor. Comput. Sci. 560 7Google Scholar
[7] 王剑, 陈皇卿, 张权, 唐朝京 2007 物理学报 56 673Google Scholar
Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673Google Scholar
[8] Bennett C H, Brassard G, Ekert A K 1992 Sci. Am. 267 50Google Scholar
[9] Wang Q, Tan M Y, Liu Y, Zeng H S 2009 J. Phys. B:At. Mol. Opt. Phys. 42 125503Google Scholar
[10] 王美姣, 夏云杰 2015 物理学报 64 240303Google Scholar
Wang M J, Xia Y J 2015 Acta Phys. Sin. 64 240303Google Scholar
[11] Hu M L 2011 Phys. Lett. A 375 2140Google Scholar
[12] Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100 052305Google Scholar
[13] Wang Q, Xu L 2020 Laser Phys. 30 045203Google Scholar
[14] Dodd P J, Halliwell J J 2004 Phys. Rev. A 69 052105Google Scholar
[15] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1
[16] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar
[17] Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H, Davidovich L 2008 Phys. Rev. A 78 022322Google Scholar
[18] Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117Google Scholar
[19] Hu M L, Fan H 2020 Sci. Chin. :Phys. Mech. Astron. 63 230322Google Scholar
[20] Bell J S 1964 Physics 1 195Google Scholar
[21] Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar
[22] Hardy L 1993 Phys. Rev. Lett. 71 1665Google Scholar
[23] White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar
[24] Yang M, Meng H X, Zhou J, Xu Z P, Xiao Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2019 Phys. Rev. A 99 032103Google Scholar
[25] Mermin N 1995 Ann. N. Y. Acad. Sci. 755 616Google Scholar
[26] 刘晋, 缪波, 贾欣燕, 樊代和 2019 物理学报 68 230302Google Scholar
Liu J, Miao B, Jia XY, Fan D H 2019 Acta Phys. Sin. 68 230302Google Scholar
[27] Goldstein S 1994 Phys. Rev. Lett. 72 1951Google Scholar
[28] Chen L, Romero J 2012 Opt. Express 20 21687Google Scholar
[29] Fan D H, Dai M C, Guo W J, Wei L F 2017 Chin. Phys. B 26 040302Google Scholar
[30] Li W J, He Z, Wang Q 2017 Int. J. Theor. Phys. 56 2813Google Scholar
[31] Xiao X, Yao Y, Xie Y M, Wang X H, Li Y L 2016 Quantum Inf. Process. 15 3881Google Scholar
-
图 1 Alice制备的信号光子(s)和闲置光子(i)通过不同阻尼类型信道D后传输给Bob, 传输后的量子态表示为
$ {\boldsymbol{\rho }} _d^{\rm{A, P, D}} $ Fig. 1. Signal photon (s) and idle photon (i) prepared by Alice are transmitted to Bob through quantum channel D with different damping types. The final quantum state after transmission can be expressed as
$ {\boldsymbol{\rho }}_d^{\rm{A, P, D}} $ .图 3 量子态经过PDC和DC阻尼信道时, 进行量子非局域关联检验的情况 (a) 量子态经过PDC后,
${D_{\max}}$ 和H随r的变化关系曲线; (b) 量子态经过DC后,${D_{\max}}$ 和H随r的变化关系曲线Fig. 3. Quantum nonlocal correlation test when the quantum state transmitted through PDC and DC: (a) The relationship
${D_{\max}}$ and H vs r when the quantum state transmitted through PDC. (b) the relationship${D_{\max}}$ and H vs r when the quantum state transmitted through DC. -
[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar
[3] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp17–60
[4] Masanes L, Pironio S, Acin A 2011 Nat. Commun. 2 238Google Scholar
[5] Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar
[6] Bennett C H, Brassard G 2014 Theor. Comput. Sci. 560 7Google Scholar
[7] 王剑, 陈皇卿, 张权, 唐朝京 2007 物理学报 56 673Google Scholar
Wang J, Chen H Q, Zhang Q, Tang C J 2007 Acta Phys. Sin. 56 673Google Scholar
[8] Bennett C H, Brassard G, Ekert A K 1992 Sci. Am. 267 50Google Scholar
[9] Wang Q, Tan M Y, Liu Y, Zeng H S 2009 J. Phys. B:At. Mol. Opt. Phys. 42 125503Google Scholar
[10] 王美姣, 夏云杰 2015 物理学报 64 240303Google Scholar
Wang M J, Xia Y J 2015 Acta Phys. Sin. 64 240303Google Scholar
[11] Hu M L 2011 Phys. Lett. A 375 2140Google Scholar
[12] Xu K, Zhang G F, Liu W M 2019 Phys. Rev. A 100 052305Google Scholar
[13] Wang Q, Xu L 2020 Laser Phys. 30 045203Google Scholar
[14] Dodd P J, Halliwell J J 2004 Phys. Rev. A 69 052105Google Scholar
[15] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1
[16] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar
[17] Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H, Davidovich L 2008 Phys. Rev. A 78 022322Google Scholar
[18] Kim Y S, Lee J C, Kwon O, Kim Y H 2012 Nat. Phys. 8 117Google Scholar
[19] Hu M L, Fan H 2020 Sci. Chin. :Phys. Mech. Astron. 63 230322Google Scholar
[20] Bell J S 1964 Physics 1 195Google Scholar
[21] Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar
[22] Hardy L 1993 Phys. Rev. Lett. 71 1665Google Scholar
[23] White A G, James D F V, Eberhard P H, Kwiat P G 1999 Phys. Rev. Lett. 83 3103Google Scholar
[24] Yang M, Meng H X, Zhou J, Xu Z P, Xiao Y, Sun K, Chen J L, Xu J S, Li C F, Guo G C 2019 Phys. Rev. A 99 032103Google Scholar
[25] Mermin N 1995 Ann. N. Y. Acad. Sci. 755 616Google Scholar
[26] 刘晋, 缪波, 贾欣燕, 樊代和 2019 物理学报 68 230302Google Scholar
Liu J, Miao B, Jia XY, Fan D H 2019 Acta Phys. Sin. 68 230302Google Scholar
[27] Goldstein S 1994 Phys. Rev. Lett. 72 1951Google Scholar
[28] Chen L, Romero J 2012 Opt. Express 20 21687Google Scholar
[29] Fan D H, Dai M C, Guo W J, Wei L F 2017 Chin. Phys. B 26 040302Google Scholar
[30] Li W J, He Z, Wang Q 2017 Int. J. Theor. Phys. 56 2813Google Scholar
[31] Xiao X, Yao Y, Xie Y M, Wang X H, Li Y L 2016 Quantum Inf. Process. 15 3881Google Scholar
计量
- 文章访问数: 4778
- PDF下载量: 99
- 被引次数: 0