搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子弱测量中纠缠对参数估计精度的影响

张晓东 於亚飞 张智明

引用本文:
Citation:

量子弱测量中纠缠对参数估计精度的影响

张晓东, 於亚飞, 张智明

Influence of entanglement on precision of parameter estimation in quantum weak measurement

Zhang Xiao-Dong, Yu Ya-Fei, Zhang Zhi-Ming
PDF
HTML
导出引用
  • 量子弱测量过程中适当的弱值可用于放大微弱物理参数并提高参数评估的精度, 这种参数评估精度的提高可能来源于体系中的纠缠. 本文借助Fisher信息研究了系统中的纠缠和系统与探针间的纠缠对弱测量过程中系统与探针间耦合参数的评估精度的影响. 分析了系统初态分别为类GHZ态的纠缠纯态和受退极化噪声影响的纠缠混态的纠缠, 以及系统和探针间的纠缠对参数评估的影响. 研究表明, 当系统初态为类GHZ态的纠缠纯态和受退极化噪声影响的纠缠混态时, Fisher信息随系统初态纠缠度的增大而增大, 且系统初末态均为最大纠缠态时, Fisher信息和后选择概率均达到最大; 但系统与探针的纠缠越弱, 测量能获得的Fisher信息越多, 参量估计的精度越高. 此研究结果表明系统中的纠缠会提高参数评估精度, 而系统与探针间的纠缠则会降低参数评估的精度.
    An appropriate weak value can be used to amplify weak physical parameters and improve the precision of parameter estimation in the process of quantum weak measurement. The increase of the precision of such a parameter estimation may originate from the entanglement in the system. This paper uses Fisher information to study the influence of the entanglement in the system and the entanglement between the system and the pointer on the estimation precision of the coupling parameters between the system and the pointer in the process of weak measurement. The entanglement of the entangled pure state of the GHZ-like state and the entangled mixed state affected by the depolarization noise and the influence of the entanglement between the system and the pointer on the parameter estimation are analyzed. The results show that the Fisher information quantity increases with the increase of the initial state entanglement degree of the system when the initial state of the system is an entangled pure state or an entangled mixed state affected by depolarization noise, and both the Fisher information quantity and the post-selection probability reach their maximum values when the initial and final state of the system are both the maximum entangled states; but the weaker the entanglement between the system and the pointer, the more the Fisher information obtained in the measurement will be and the higher the accuracy of parameter estimation. These research results show that the entanglement in the system will improve the precision of parameter estimation, while the entanglement between the system and the pointer will reduce the precision of parameter estimation.
      通信作者: 於亚飞, yuyafei@m.scnu.edu.cn ; 张智明, zhangzhiming@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61941501, 61775062, 62075129)资助的课题.
      Corresponding author: Yu Ya-Fei, yuyafei@m.scnu.edu.cn ; Zhang Zhi-Ming, zhangzhiming@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61941501, 61775062, 62075129)
    [1]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [2]

    Viza G I, Martínez-Rincón J, Alves G B, Jordan A N, Howell J C 2015 Phys. Rev. A 92 032127Google Scholar

    [3]

    Jozsa R 2007 Phys. Rev. A 76 044103Google Scholar

    [4]

    Dressel J 2015 Phys. Rev. A 91 032116Google Scholar

    [5]

    Dixon P B, Starling D J, Jordan A N, Howell J C 2009 Phys. Rev. Lett. 102 173601Google Scholar

    [6]

    Zhou L, Turek Y, Sun C P, Nori F 2013 Phys. Rev. A 88 053815Google Scholar

    [7]

    Starling D J, Dixon P B, Jordan A N, Howell J C 2010 Phys. Rev. A 82 063822Google Scholar

    [8]

    Magaña-Loaiza O S, Mirhosseini M, Rodenburg B, Boyd R W 2014 Phys. Rev. Lett. 112 200401Google Scholar

    [9]

    Viza G I, Martínez-Rincón J, Howland G A, Frostig H, Shomroni I, Dayan B, Howell J C 2013 Opt. Lett. 38 2949Google Scholar

    [10]

    Egan P, Stone J A 2012 Opt. Lett. 37 4991Google Scholar

    [11]

    Pati A K, Mukhopadhyay C, Chakraborty S, Ghosh S 2020 Phys. Rev. A 102 012204Google Scholar

    [12]

    Starling D J, Dixon P B, Williams N S, Jordan A N, Howell J C 2010 Phys. Rev. A 82 011802(RGoogle Scholar

    [13]

    Brunner N, Simon C 2010 Phys. Rev. Lett. 105 010405Google Scholar

    [14]

    Strübi G, Bruder C 2013 Phys. Rev. Lett. 110 083605Google Scholar

    [15]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604Google Scholar

    [16]

    Zhang Z H, Chen G, Xu X Y, Tang J S, Zhang W H, Han Y J, Li C F, Guo G C 2016 Phys. Rev. A 94 053843Google Scholar

    [17]

    Liu W T, Martínez-Rincón J, Howell J C 2019 Phys. Rev. A 100 012125Google Scholar

    [18]

    Lyons K, Dressel J, Jordan A N, Howell J C, Kwiat P G 2015 Phys. Rev. Lett. 114 170801Google Scholar

    [19]

    Wang Y T, Tang J S, Hu G, Wang J, Yu S, Zhou Z Q, Cheng Z D, Xu J S, Fang S Z, Wu Q L, Li C F, Guo G C 2016 Phys. Rev. Lett. 117 230801Google Scholar

    [20]

    Pang S S, Dressel J, Brun T A 2014 Phys. Rev. Lett. 113 030401Google Scholar

    [21]

    Chen G S, Liu B H, Hu M J, Hu X M, Li C F, Guo G C, Zhang Y S 2019 Phys. Rev. A 99 032120Google Scholar

    [22]

    Zhang L J, Datta A, Walmsley L A 2015 Phys. Rev. Lett. 114 210801Google Scholar

    [23]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [24]

    Luo L, He Y, Liu X, Li Z X, Duan P, Zhang Z Y 2020 Opt. Express 28 6408Google Scholar

  • 图 1  n量子比特系统弱测量的原理图. 系统初始态为$\left|S_{{\rm{i}}}\right\rangle$, 探针初始态为$|T\rangle$. 系统和探针之间的演化算符为$\hat {\boldsymbol {U}} $. 演化后对系统做$\left| {{S}_{{\rm{f}}}} \right\rangle $的后选择. 探针末态为$\left|T_{{\rm{f}}}\right\rangle$

    Fig. 1.  Schematic diagram of the weak measurement of the n qubit system. The initial state of the system is $\left|S_{{\rm{i}}}\right\rangle$, and the initial state of the pointer is $|T\rangle$. The evolution operator is $ \hat {\boldsymbol {U}} $ between the system and the pointer. After the evolution, the system is selected to $\left| {{S}_{{\rm{f}}}} \right\rangle $. The final state of the pointer is $\left|T_{{\rm{f}}}\right\rangle$

    图 2  (a)后选择概率${{P}_{{\rm{d}}}}$θφ的变化趋势; (b)总的Fisher信息${{F}_{{\rm{tot}}}}$θφ的变化趋势. 图中红色的线表示$\theta +\varphi = {\pi }/{2}$. 参数选取为$n=2$, $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}$, $\varepsilon = $$ 0.01$, $g=0.88\;\rm{μ} {\rm{m}}$

    Fig. 2.  (a) Post-selection probability ${{P}_{{\rm{d}}}}$ as a function of θ and φ; (b) total Fisher information ${{F}_{{\rm{tot}}}}$ as a function of θ and φ. The red line represent $\theta +\varphi = {\pi }/{2}$. Parameters selection: $n=2$, $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}$, $\varepsilon = $$ 0.01$, $g=0.88\;\rm{μ} {\rm{m}}$.

    图 3  类GHZ态的纠缠纯态的纠缠度$E_{{\rm{s}}}^{({\rm{p}})}$随参数θ的变化曲线, 绘制了$\theta =\{0, \pi /2\}$的范围

    Fig. 3.  Entanglement $E_{{\rm{s}}}^{({\rm{p}})}$ of the entangled pure states of GHZ-like states as a function of the parameter $\theta$. we have plotted the range of $\theta =\{0, \pi /2\}$.

    图 4  蓝色曲线表示后选择概率随纠缠度$E_{{\rm{s}}}^{({\rm{p}})}$的变化曲线, 橙色曲线表示耦合参数g的Fisher信息随纠缠度$E_{{\rm{s}}}^{({\rm{p}})}$的变化曲线. 参数选取: $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}$, $\varepsilon = 0.01$, $g= $$ 0.88\;\text{μ} {\rm{m}}$, $n=2$.

    Fig. 4.  Blue curve represents the post-selection probability as a function of entanglement $E_{{\rm{s}}}^{({\rm{p}})}$, and the orange curve represents the Fisher information of the coupling parameter g as a function of entanglement $E_{{\rm{s}}}^{({\rm{p}})}$. Parameter selection: $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}$, $\varepsilon = 0.01$, $g=0.88\;\text{μ} {\rm{m}}$, $n=2$.

    图 5  $n=2$时, 系统初态的纠缠度$E_{{\rm{s}}}^{({\rm{m}})}$随纯度参数Q的变化曲线

    Fig. 5.  Entanglement $E_{{\rm{s}}}^{({\rm{m}})}$ of the initial state of the system as a function of the purity parameter Q. Parameter selection: $n=2$.

    图 6  蓝色曲线表示后选择概率随纠缠度$E_{{\rm{s}}}^{({\rm{m}})}$的变化曲线, 橙色曲线表示参数g的Fisher信息随纠缠度$E_{{\rm{s}}}^{({\rm{m}})}$的变化曲线. 参数选取: $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}$, $\varepsilon = 0.01$, $g=0.88\;\rm{μ} {\rm{m}}$

    Fig. 6.  Blue curve represents the post-selection probability as a function of entanglement $E_{{\rm{s}}}^{({\rm{m}})}$, and the orange curve represents the Fisher information of the parameter g as a function of entanglement $E_{{\rm{s}}}^{({\rm{m}})}$. Parameter selection: $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}$, $\varepsilon = 0.01$, $g=0.88\;\rm {μ} {\rm{m}}$.

    图 7  浅蓝色曲线表示初态为纠缠态时参数g的Fisher信息随耦合参数g的变化曲线, 深蓝色曲线表示初态为直积态时参数g的Fisher信息随耦合参数g的变化曲线. 参数选取: $n=2$, $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}$, $\varepsilon = 0.01$

    Fig. 7.  Light blue curve represents Fisher information of the parameter g as a function of the coupling parameter g when the initial state is entangled, and dark blue curve represents Fisher information of the parameter g as a function of the coupling parameter g when the initial state is product state. Parameter selection: $n=2$, $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}$, $\varepsilon = $$ 0.01$.

    图 8  (a) 系统探针之间的纠缠度${{E}_{{\rm{st}}}}$随耦合参数g的变化曲线; (b)参数g的Fisher信息随系统探针之间的纠缠度${{E}_{{\rm{st}}}}$的变化曲线. 参数选取为$\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}, \varepsilon = 0.01$

    Fig. 8.  (a) Entanglement ${{E}_{{\rm{st}}}}$ between system and pointers as a function of the coupling parameter g; (b) the Fisher information of the parameter g as a function of the entanglement ${{E}_{{\rm{st}}}}$ between system and pointers. Parameter selection: $\delta = 4\times {{10}^{4}}\;{{{\rm{m}}}^{-1}}, \varepsilon = 0.01$.

    表 1  两种方案后选择概率和后选择后指针分布的比较

    Table 1.  Comparison of the post-selection probability and the post-selection pointer distribution of the two schemes

    系统初态后选择概率后选择后指针分布
    $\left| S_{\rm{i}}^{{\rm{m}}} \right\rangle $${ {P}_{\rm{d} } } = \dfrac{1}{2}\left( 1-{ {\text{e} }^{-2{ {g}^{2} }{ {n}^{2} }{ {\delta }^{2} } } }\cos \varepsilon \right)$$\dfrac{1}{ { {P}_{\rm{d} } } }{ {\sin }^{2} }\Big(ngp+\dfrac{\varepsilon }{2}\Big)P(p)$
    $\left| S_{\rm{i}}^{({\rm{P}})} \right\rangle $$ { {P}_{\rm{d} } }^{\prime } = { {2}^{-n} }\left( 1- { {\text{e} }^{-2{ {g}^{2} }{ {n}^{2} }{ {\delta }^{2} } } } \cos \varepsilon\right) $$\dfrac{1}{ { {2}^{n-1} }{ {P}_{\rm{d} } }^{\prime } }{ {\sin }^{2} }\Big(ngp+\dfrac{\varepsilon }{2}\Big)P(p)$
    下载: 导出CSV
  • [1]

    Aharonov Y, Albert D Z, Vaidman L 1988 Phys. Rev. Lett. 60 1351Google Scholar

    [2]

    Viza G I, Martínez-Rincón J, Alves G B, Jordan A N, Howell J C 2015 Phys. Rev. A 92 032127Google Scholar

    [3]

    Jozsa R 2007 Phys. Rev. A 76 044103Google Scholar

    [4]

    Dressel J 2015 Phys. Rev. A 91 032116Google Scholar

    [5]

    Dixon P B, Starling D J, Jordan A N, Howell J C 2009 Phys. Rev. Lett. 102 173601Google Scholar

    [6]

    Zhou L, Turek Y, Sun C P, Nori F 2013 Phys. Rev. A 88 053815Google Scholar

    [7]

    Starling D J, Dixon P B, Jordan A N, Howell J C 2010 Phys. Rev. A 82 063822Google Scholar

    [8]

    Magaña-Loaiza O S, Mirhosseini M, Rodenburg B, Boyd R W 2014 Phys. Rev. Lett. 112 200401Google Scholar

    [9]

    Viza G I, Martínez-Rincón J, Howland G A, Frostig H, Shomroni I, Dayan B, Howell J C 2013 Opt. Lett. 38 2949Google Scholar

    [10]

    Egan P, Stone J A 2012 Opt. Lett. 37 4991Google Scholar

    [11]

    Pati A K, Mukhopadhyay C, Chakraborty S, Ghosh S 2020 Phys. Rev. A 102 012204Google Scholar

    [12]

    Starling D J, Dixon P B, Williams N S, Jordan A N, Howell J C 2010 Phys. Rev. A 82 011802(RGoogle Scholar

    [13]

    Brunner N, Simon C 2010 Phys. Rev. Lett. 105 010405Google Scholar

    [14]

    Strübi G, Bruder C 2013 Phys. Rev. Lett. 110 083605Google Scholar

    [15]

    Xu X Y, Kedem Y, Sun K, Vaidman L, Li C F, Guo G C 2013 Phys. Rev. Lett. 111 033604Google Scholar

    [16]

    Zhang Z H, Chen G, Xu X Y, Tang J S, Zhang W H, Han Y J, Li C F, Guo G C 2016 Phys. Rev. A 94 053843Google Scholar

    [17]

    Liu W T, Martínez-Rincón J, Howell J C 2019 Phys. Rev. A 100 012125Google Scholar

    [18]

    Lyons K, Dressel J, Jordan A N, Howell J C, Kwiat P G 2015 Phys. Rev. Lett. 114 170801Google Scholar

    [19]

    Wang Y T, Tang J S, Hu G, Wang J, Yu S, Zhou Z Q, Cheng Z D, Xu J S, Fang S Z, Wu Q L, Li C F, Guo G C 2016 Phys. Rev. Lett. 117 230801Google Scholar

    [20]

    Pang S S, Dressel J, Brun T A 2014 Phys. Rev. Lett. 113 030401Google Scholar

    [21]

    Chen G S, Liu B H, Hu M J, Hu X M, Li C F, Guo G C, Zhang Y S 2019 Phys. Rev. A 99 032120Google Scholar

    [22]

    Zhang L J, Datta A, Walmsley L A 2015 Phys. Rev. Lett. 114 210801Google Scholar

    [23]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

    [24]

    Luo L, He Y, Liu X, Li Z X, Duan P, Zhang Z Y 2020 Opt. Express 28 6408Google Scholar

  • [1] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [2] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制. 物理学报, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [3] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [4] 黄江. 弱测量对四个量子比特量子态的保护. 物理学报, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [5] 宗晓岚, 杨名. 多粒子纠缠的保护方案. 物理学报, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [6] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [7] 王美姣, 夏云杰. 在有限温度下运用弱测量保护量子纠缠. 物理学报, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [8] 李浩珍, 谢双媛, 许静平, 羊亚平. 结构库中二能级原子与自发辐射场间的纠缠演化. 物理学报, 2014, 63(12): 124201. doi: 10.7498/aps.63.124201
    [9] 胡要花, 谭勇刚, 刘强. 强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐. 物理学报, 2013, 62(7): 074202. doi: 10.7498/aps.62.074202
    [10] 蔡舒平, 戴理, 倪淏. 基于Fisher信息理论的突变检测新方法. 物理学报, 2013, 62(18): 189204. doi: 10.7498/aps.62.189204
    [11] 胡要花. Stark位移对热环境下双Jaynes-Cummings模型中原子纠缠的影响. 物理学报, 2012, 61(16): 160304. doi: 10.7498/aps.61.160304
    [12] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠. 物理学报, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [13] 秦猛. 多量子位Heisenberg XX链中的杂质纠缠. 物理学报, 2010, 59(4): 2212-2216. doi: 10.7498/aps.59.2212
    [14] 王东. 正交振幅正关联正交位相反关联光束的贝尔态直接测量. 物理学报, 2010, 59(11): 7596-7601. doi: 10.7498/aps.59.7596
    [15] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [16] 成秋丽, 谢双媛, 羊亚平. 频率变化的光场对双光子过程中量子纠缠的调控. 物理学报, 2008, 57(11): 6968-6975. doi: 10.7498/aps.57.6968
    [17] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [18] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [19] 黄永畅, 刘 敏. 一般WGHZ态和它的退纠缠与概率隐形传态. 物理学报, 2005, 54(10): 4517-4523. doi: 10.7498/aps.54.4517
    [20] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠. 物理学报, 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
计量
  • 文章访问数:  5705
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-25
  • 修回日期:  2021-08-04
  • 上网日期:  2021-08-30
  • 刊出日期:  2021-12-20

/

返回文章
返回