搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构库中二能级原子与自发辐射场间的纠缠演化

李浩珍 谢双媛 许静平 羊亚平

引用本文:
Citation:

结构库中二能级原子与自发辐射场间的纠缠演化

李浩珍, 谢双媛, 许静平, 羊亚平

Evolution of entanglement between a two-level atom and spontaneous emission field in structured reservoir

Li Hao-Zhen, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping
PDF
导出引用
  • 利用量子约化熵对比研究了真空、一维腔、各向同性以及各向异性光子晶体四种不同结构库中二能级原子与自发辐射场间的纠缠演化特性. 研究表明,原子-光场纠缠的演化特性与原子所处结构库的模密度分布密切相关. 在真空和一维腔中,模密度随频率连续变化,原子-光场纠缠将最终衰减至零. 而在各向同性和各向异性光子晶体中,模密度中存在光子禁带,原子-光场纠缠能最终趋于稳态值. 可以通过改变原子所处结构库的模密度来控制原子-光场纠缠的演化特性.
    The time evolutions of the entanglement between a two-level atom and its spontaneous emission field in free space, cavity, isotropic and anisotropic photonic crystal are studied by using quantum entropy. It is found that the evolution properties of the atom-field entanglement are directly related to the nature of the structured reservoir,specifically, to the distribution of the density of modes. In free space and cavity, as the density of the modes varies smoothly with frequency, the atom-field entanglement decays to zero in a finite time. However in an isotropic and anisotropic photonic crystal, the atom-field entanglement can keep steady due to the existence of a photonic band gap in the density of the modes. Thus, we can control the time evolution of the entanglement between the atom and its spontaneous emission field by changing the density of the modes of the structured reservoirs.
    • 基金项目: 国家自然科学基金(批准号:11074188,91021012,11274242)、国家重点基础研究发展计划(批准号:2011CB922203)和中央高校基本科研业务费资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074188, 91021012, 11274242), the National Basic Research Program of China (Grant No. 2011CB922203), and the Fundamental Research Fund for the Central Universities, China.
    [1]

    Purcell E M 1946 Phys. Rev. 69 681

    [2]

    Kleppner D 1981 Phys. Rev. Lett. 47 233

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    John S 1987 Phys. Rev. Lett. 58 2486

    [5]

    John S, Quang T 1995 Phys. Rev. Lett. 74 3419

    [6]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [7]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [8]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [9]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [10]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 62 013805

    [11]

    Lambropoulos P, Nikolopoulos G M, Nielsen T R, Bay S 2000 Rep. Prog. Phys. 63 455

    [12]

    Zheng Y Z, Dai L Y, Guo G C 2003 Acta Phys. Sin. 52 2678 (in Chinese)[郑亦庄, 戴玲玉, 郭光灿 2003 物理学报 52 2678]

    [13]

    Zhang Q, Li F L, Li H R 2006 Acta Phys. Sin. 55 2275 (in Chinese)[张茜, 李福利, 李宏荣 2006 物理学报 55 2275]

    [14]

    Zhang J X, Dong R F, Xie C D 2001 Physics 30 43 (in Chinese) [张俊香, 董瑞芳, 谢常德 2001 物理 30 43]

    [15]

    Pereira S F, Ou Z Y, Kimble H J 2000 Phys. Rev. A 62 042311

    [16]

    Grover L K 1997 Phys. Rev. Lett. 79 325

    [17]

    Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746 (in Chinese) [苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746]

    [18]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [19]

    Han F, Xia Y J 2009 Chin. Phys. B 18 5144

    [20]

    Wang F Q, Zhang Z M, Liang R S 2008 Phys. Rev. A 78 042320

    [21]

    Bellomo B, Franco R L, Maniscalco S, Compagno G 2008 Phys. Rev. A 78 060302

    [22]

    Zhang Y J, Yang X Q, Han W, Xia Y J 2013 Chin. Phys. B 22 090307

    [23]

    Cui C C, Xie S Y, Yang Y P 2012 Acta Phys. Sin. 61 124206 (in Chinese)[崔丛丛, 谢双媛, 羊亚平 2012 物理学报 61 124206]

    [24]

    Cummings N I, Hu B L 2008 Phys. Rev. A 77 053823

    [25]

    Lazarou C, Luoma K, Maniscalco S, Piilo J, Garraway B M 2012 Phys. Rev. A 86 012331

    [26]

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese)[郭亮, 梁先庭 2009 物理学报 58 50]

    [27]

    Fang M F, Zhu S Y 2006 Physica A 369 475

    [28]

    Xie S Y, Hu X 2010 Acta Phys. Sin. 59 6172 (in Chinese)[谢双媛, 胡翔 2010 物理学报 59 6172]

    [29]

    Roshan Entezar S 2009 Phys Lett. A 373 3413

    [30]

    Cheng Q L, Xie S Y, Yang Y P 2008 Acta Phys. Sin. 57 6968 (in Chinese) [成秋丽, 谢双媛, 羊亚平 2008 物理学报 57 6968]

    [31]

    Zhang L H, Li G X, Gan Z W 2003 Acta Phys. Sin. 52 1168 (in Chinese) [张立辉, 李高翔, 甘仲惟 2003 物理学报 52 1168]

    [32]

    Wang C Z, Fang M F 2002 Acta Phys. Sin. 51 1989 (in Chinese) [王成志, 方卯发 2002 物理学报 51 1989]

    [33]

    Wooters W K 1998 Phys. Rev. Lett. 80 2245

    [34]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p101

    [35]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [36]

    Phoenix S J D, Knight P L 1988 Ann. Phys. 186 381

    [37]

    Phoenix S J D, Knight P L 1991 Phys. Rev. A 44 6023

    [38]

    Phoenix S J D, Knight P L 1991 Phys. Rev. Lett. 66 2833

    [39]

    Araki H, Lieb E 1970 Commum. Math. Phys. 18 160

  • [1]

    Purcell E M 1946 Phys. Rev. 69 681

    [2]

    Kleppner D 1981 Phys. Rev. Lett. 47 233

    [3]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [4]

    John S 1987 Phys. Rev. Lett. 58 2486

    [5]

    John S, Quang T 1995 Phys. Rev. Lett. 74 3419

    [6]

    John S, Wang J 1991 Phys. Rev. B 43 12772

    [7]

    John S, Quang T 1994 Phys. Rev. A 50 1764

    [8]

    John S, Wang J 1990 Phys. Rev. Lett. 64 2418

    [9]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 61 043809

    [10]

    Yang Y P, Zhu S Y 2000 Phys. Rev. A 62 013805

    [11]

    Lambropoulos P, Nikolopoulos G M, Nielsen T R, Bay S 2000 Rep. Prog. Phys. 63 455

    [12]

    Zheng Y Z, Dai L Y, Guo G C 2003 Acta Phys. Sin. 52 2678 (in Chinese)[郑亦庄, 戴玲玉, 郭光灿 2003 物理学报 52 2678]

    [13]

    Zhang Q, Li F L, Li H R 2006 Acta Phys. Sin. 55 2275 (in Chinese)[张茜, 李福利, 李宏荣 2006 物理学报 55 2275]

    [14]

    Zhang J X, Dong R F, Xie C D 2001 Physics 30 43 (in Chinese) [张俊香, 董瑞芳, 谢常德 2001 物理 30 43]

    [15]

    Pereira S F, Ou Z Y, Kimble H J 2000 Phys. Rev. A 62 042311

    [16]

    Grover L K 1997 Phys. Rev. Lett. 79 325

    [17]

    Su X L, Jia X J, Xie C D, Peng K C 2010 Physics 39 746 (in Chinese) [苏晓龙, 贾晓军, 谢常德, 彭堃墀 2010 物理 39 746]

    [18]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [19]

    Han F, Xia Y J 2009 Chin. Phys. B 18 5144

    [20]

    Wang F Q, Zhang Z M, Liang R S 2008 Phys. Rev. A 78 042320

    [21]

    Bellomo B, Franco R L, Maniscalco S, Compagno G 2008 Phys. Rev. A 78 060302

    [22]

    Zhang Y J, Yang X Q, Han W, Xia Y J 2013 Chin. Phys. B 22 090307

    [23]

    Cui C C, Xie S Y, Yang Y P 2012 Acta Phys. Sin. 61 124206 (in Chinese)[崔丛丛, 谢双媛, 羊亚平 2012 物理学报 61 124206]

    [24]

    Cummings N I, Hu B L 2008 Phys. Rev. A 77 053823

    [25]

    Lazarou C, Luoma K, Maniscalco S, Piilo J, Garraway B M 2012 Phys. Rev. A 86 012331

    [26]

    Guo L, Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese)[郭亮, 梁先庭 2009 物理学报 58 50]

    [27]

    Fang M F, Zhu S Y 2006 Physica A 369 475

    [28]

    Xie S Y, Hu X 2010 Acta Phys. Sin. 59 6172 (in Chinese)[谢双媛, 胡翔 2010 物理学报 59 6172]

    [29]

    Roshan Entezar S 2009 Phys Lett. A 373 3413

    [30]

    Cheng Q L, Xie S Y, Yang Y P 2008 Acta Phys. Sin. 57 6968 (in Chinese) [成秋丽, 谢双媛, 羊亚平 2008 物理学报 57 6968]

    [31]

    Zhang L H, Li G X, Gan Z W 2003 Acta Phys. Sin. 52 1168 (in Chinese) [张立辉, 李高翔, 甘仲惟 2003 物理学报 52 1168]

    [32]

    Wang C Z, Fang M F 2002 Acta Phys. Sin. 51 1989 (in Chinese) [王成志, 方卯发 2002 物理学报 51 1989]

    [33]

    Wooters W K 1998 Phys. Rev. Lett. 80 2245

    [34]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p101

    [35]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [36]

    Phoenix S J D, Knight P L 1988 Ann. Phys. 186 381

    [37]

    Phoenix S J D, Knight P L 1991 Phys. Rev. A 44 6023

    [38]

    Phoenix S J D, Knight P L 1991 Phys. Rev. Lett. 66 2833

    [39]

    Araki H, Lieb E 1970 Commum. Math. Phys. 18 160

  • [1] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响. 物理学报, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [2] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [3] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用. 物理学报, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [4] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [5] 胡要花, 谭勇刚, 刘强. 强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐. 物理学报, 2013, 62(7): 074202. doi: 10.7498/aps.62.074202
    [6] 徐健, 陈小余, 李海涛. 多进制量子图态纠缠的确定 . 物理学报, 2012, 61(22): 220304. doi: 10.7498/aps.61.220304
    [7] 王继成, 廖庆洪, 王月媛, 王跃科, 刘树田. k光子Jaynes-Cummings模型与运动原子相互作用中的熵交换及纠缠. 物理学报, 2011, 60(11): 114208. doi: 10.7498/aps.60.114208
    [8] 刘小娟, 刘一曼, 周并举. 原子与双模相干强场依赖强度耦合多光子过程中纠缠量度与制备. 物理学报, 2010, 59(12): 8518-8525. doi: 10.7498/aps.59.8518
    [9] 秦猛. 多量子位Heisenberg XX链中的杂质纠缠. 物理学报, 2010, 59(4): 2212-2216. doi: 10.7498/aps.59.2212
    [10] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [11] 王彦辉, 夏云杰. 具有Dzyaloshinskii-Moriya相互作用的三量子比特海森伯模型中的对纠缠. 物理学报, 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [12] 单传家, 程维文, 刘堂昆, 黄燕霞, 李 宏. 具有Dzyaloshinskii-Moriya相互作用的一维随机量子XY模型中的纠缠特性. 物理学报, 2008, 57(5): 2687-2694. doi: 10.7498/aps.57.2687
    [13] 成秋丽, 谢双媛, 羊亚平. 频率变化的光场对双光子过程中量子纠缠的调控. 物理学报, 2008, 57(11): 6968-6975. doi: 10.7498/aps.57.6968
    [14] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [15] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应. 物理学报, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [16] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [17] 谭 霞, 张成强, 夏云杰. 双模场与原子相互作用中的量子纠缠和内禀退相干. 物理学报, 2006, 55(5): 2263-2268. doi: 10.7498/aps.55.2263
    [18] 刘小娟, 方卯发, 周清平. 具有原子运动的双光子J-C模型中量子力学通道与量子互熵. 物理学报, 2005, 54(2): 703-709. doi: 10.7498/aps.54.703
    [19] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠. 物理学报, 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  3127
  • PDF下载量:  611
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-31
  • 修回日期:  2014-03-01
  • 刊出日期:  2014-06-05

结构库中二能级原子与自发辐射场间的纠缠演化

  • 1. 同济大学物理科学与工程学院, 先进微结构材料教育部重点实验室, 上海 200092
    基金项目: 国家自然科学基金(批准号:11074188,91021012,11274242)、国家重点基础研究发展计划(批准号:2011CB922203)和中央高校基本科研业务费资助的课题.

摘要: 利用量子约化熵对比研究了真空、一维腔、各向同性以及各向异性光子晶体四种不同结构库中二能级原子与自发辐射场间的纠缠演化特性. 研究表明,原子-光场纠缠的演化特性与原子所处结构库的模密度分布密切相关. 在真空和一维腔中,模密度随频率连续变化,原子-光场纠缠将最终衰减至零. 而在各向同性和各向异性光子晶体中,模密度中存在光子禁带,原子-光场纠缠能最终趋于稳态值. 可以通过改变原子所处结构库的模密度来控制原子-光场纠缠的演化特性.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回