搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

借助弱测量和环境辅助测量的N量子比特状态退相干抑制

张骄阳 丛爽 王驰 SajedeHarraz

引用本文:
Citation:

借助弱测量和环境辅助测量的N量子比特状态退相干抑制

张骄阳, 丛爽, 王驰, SajedeHarraz

Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement

Zhang Jiao-Yang, Cong Shuang, Wang Chi, Sajede Harraz
PDF
HTML
导出引用
  • 退相干抑制是量子系统控制中一项重要的控制任务. 受到经典控制理论中的前馈控制的启发, 本文借助弱测量和环境辅助测量提出一种新的退相干抑制方案, 并将其推广到一般的N量子比特情形. 所提方案的核心思想是: 在退相干通道前, 借助弱测量算符和前馈控制算符将量子比特转移到一个对环境噪声更鲁棒的状态上; 在退相干通道中, 对与被保护的量子比特耦合的环境进行测量; 在退相干通道后, 再借助相应的反转算符恢复初始状态. 所提方案适用于具有至少一个可逆的Kraus算符的任意退相干通道下的量子状态保护. 假设所考虑的振幅阻尼或相位阻尼退相干通道的特性是完全已知的, 那么所提方案即便是在重阻尼情况下也能取得100%的保真度, 这是所提方案的最大优势. 以2量子比特纠缠态的并发度增强和噪声环境下量子隐形传态的保真度提高为例设计了两组数值仿真实验, 推导了性能指标的解析表达式, 并通过与无保护方案对比凸显出所提方案的优越性.
    All open quantum systems are affected by environmental noises due to their interactions with the external environment and inevitably suffer from decoherence. Hence, it is fundamentally important and necessary to investigate decoherence suppression for open quantum systems via proper control strategies. Inspired by feed-forward control in the classical control theory, this paper proposes a novel decoherence suppression scheme via weak measurement and environment-assisted measurement. We first take the single-qubit system as an example to illustrate steps of the proposed scheme. To be specific, the single-qubit system is transferred to a state that is more robust to environmental noises via pre-weak measurement operators and feed-forward control operators before the decoherence channel, a measurement is performed on the environment coupled to the protected qubit during the decoherence channel, and the initial state is recovered via reversed feed-forward control operators and post-weak measurement operators after the decoherence channel. The optimum post-weak measurement strength is derived by setting the normalized final state equal to the initial state. By considering the optimum post-weak measurement strength, analytical formulas of the total success probability and the total fidelity are deduced. The proposed scheme is applicable for protecting quantum states from arbitrary decoherence channels with at least one invertible Kraus operator although only the amplitude damping channel and the phase damping channel are taken into account. Provided that the decay rate of the amplitude or phase damping channel is completely known, one can always achieve unit fidelity even for heavy damping cases, which is the biggest advantage of the proposed scheme. Influences of several parameters including strengths of weak measurements, the initial state and the decay rate of the decoherence channel on the performance of decoherence suppression are analyzed, and detailed procedures of a single-qubit pure and mixed state protection are presented on the Bloch sphere, respectively. Subsequently, the Kronecker product is employed to construct operators of dimension $ 2^N \times 2^N$, the proposed scheme is extended to the general N-qubit case, and unified analytical formulas of the total success probability and the total fidelity are deduced. By applying the proposed scheme to the protection of two-qubit entangled states, it is demonstrated that post-weak measurement operators are not necessary sometimes because of the particular structure of two-qubit entangled states. Furthermore, two numerical simulations are designed to enhance the concurrence of two-qubit entangled states and improve the average fidelity of the standard quantum teleportation in a noisy environment. Analytical formulas of the improvement of concurrence and the average teleportation fidelity are deduced, and the superiority of the proposed scheme is highlighted in comparison with unprotected scenarios.
      通信作者: 丛爽, scong@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61973290)资助的课题
      Corresponding author: Cong Shuang, scong@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61973290)
    [1]

    丛爽, 匡森 2020 量子系统控制理论与方法 (合肥: 中国科学技术大学出版社) 第32–33页

    Cong S, Kuang S 2020 Control Theory and Methods of Quantum Systems (Hefei: Press of University of Science and Technology of China) pp32–33 (in Chinese)

    [2]

    Cardoso E S, de Oliveira M D, Furuya K 2005 Phys. Rev. A 72 042320Google Scholar

    [3]

    Fan H Y, Hu L Y 2009 Opt. Commun. 282 932Google Scholar

    [4]

    刘其功, 计新 2012 物理学报 61 230303Google Scholar

    Liu Q G, Ji X 2012 Acta Phys. Sin. 61 230303Google Scholar

    [5]

    Piao M Z, Ji X 2012 J. Mod. Opt. 59 21Google Scholar

    [6]

    Jahangir R, Arshed N, Toor A H 2015 Quantum Inf. Process. 14 765Google Scholar

    [7]

    杨光, 廉保旺, 聂敏 2015 物理学报 64 010303Google Scholar

    Yang G, Lian B W, Nie M 2015 Acta Phys. Sin. 64 010303Google Scholar

    [8]

    D'Arrigo A, Benenti G, Falci G, Macchiavello C 2015 Phys. Rev. A 92 062342Google Scholar

    [9]

    胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和 2022 物理学报 71 070301Google Scholar

    Hu Q, Zeng B Y, Gu P Y, Jia X Y, Fan D H 2022 Acta Phys. Sin. 71 070301Google Scholar

    [10]

    Harraz S, Cong S, Nieto J J 2022 Int. J. Quantum Inf. 20 2250007Google Scholar

    [11]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594Google Scholar

    [12]

    Kempe J, Bacon D, Lidar D A, Whaley K B 2001 Phys. Rev. A 63 392Google Scholar

    [13]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498Google Scholar

    [14]

    Chen M, Kuang S, Cong S 2017 J. Franklin Inst. 354 439Google Scholar

    [15]

    Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar

    [16]

    Cramer J, Kalb N, Rol M A, Hensen B, Blok M S, Markham M, Twitchen D J, Hanson R, Taminian T H 2016 Nat. Commun. 7 11526Google Scholar

    [17]

    Ofek N, Petrenko A, Heeres R, Reinhold P, Leghtas Z, Vlastakis B, Liu Y, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H, Schoelkopf R J 2016 Nature 536 441Google Scholar

    [18]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733Google Scholar

    [19]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417Google Scholar

    [20]

    Du J, Rong X, Zhao N, Wang Y, Yang J, Liu R B 2009 Nature 461 1265Google Scholar

    [21]

    汪野, 张静宁, 金奇奂 2019 物理学报 68 030306Google Scholar

    Wang Y, Zhang J N, Kim K 2019 Acta Phys. Sin. 68 030306Google Scholar

    [22]

    Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C, Bartlett S D 2007 Phys. Rev. A 75 012329Google Scholar

    [23]

    Gillett G G, Dalton R B, Lanyon B P, Almeida M P, Barbieri M, Pryde G J, O'Brien J L, Resch K J, Bartlett S D, White A G 2010 Phys. Rev. Lett. 104 080503Google Scholar

    [24]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103Google Scholar

    [25]

    黄江 2017 物理学报 66 010301Google Scholar

    Huang J 2017 Acta Phys. Sin. 66 010301Google Scholar

    [26]

    Wang C Q, Xu B M, Zou J, He Z, Yan Y, Li J G, Shao B 2014 Phys. Rev. A 89 032303Google Scholar

    [27]

    Harraz S, Cong S, Li K 2020 Quantum Inf. Process. 19 250Google Scholar

    [28]

    Harraz S, Cong S, Kuang S 2019 J. Syst. Sci. Complex. 32 1264Google Scholar

    [29]

    Gregoratti M, Werner R F 2003 J. Mod. Opt. 50 915Google Scholar

    [30]

    Wang K, Zhao X, Yu T 2014 Phys. Rev. A 89 042320Google Scholar

    [31]

    Xu X M, Cheng L Y, Liu A P, Su S L, Wang H F, Zhang S 2015 Quantum Inf. Process. 14 4147Google Scholar

    [32]

    Wu H J, Jin Z, Zhu A D 2018 Int. J. Theor. Phys. 57 1235Google Scholar

    [33]

    Harraz S, Cong S, Nieto J J 2021 Eur. Phys. J. Plus 136 851Google Scholar

    [34]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp26–28

  • 图 1  整个退相干抑制方案的流程图

    Fig. 1.  Schematic diagram of the whole decoherence suppression scheme

    图 2  后-弱测量的强度最优时$g_{{\rm{tot}}}^{(1)}$pr的关系

    Fig. 2.  $g_{{\rm{tot}}}^{(1)}$ is a function of p and r with the optimum post-weak measurement strength

    图 3  固定α$r = 0.5$的情况下${\rm{fid}}_{{\rm{tot}}}^{(1)}$pq的关系 (a) $|\alpha | = 0.2$; (b) $|\alpha | = 0.8$

    Fig. 3.  ${\rm{fid}}_{{\rm{tot}}}^{(1)}$ is a function of p and q with fixed α and $r = 0.5$: (a) $|\alpha | = 0.2$; (b) $|\alpha | = 0.8$

    图 4  固定r的情况下$g_{{\rm{tot}}}^{(1)}$pq的关系 (a) $r = 0.3$; (b) $r = 0.9$

    Fig. 4.  $g_{{\rm{tot}}}^{(1)}$ is a function of p and q with fixed r: (a) $r = 0.3$; (b) $r = 0.9$

    图 5  固定r的情况下${\rm{fid}}_{{\rm{av}}}^{(1)}$pq的关系 (a) $r = 0.3$; (b) $r = 0.9$

    Fig. 5.  ${\rm{fid}}_{{\rm{av}}}^{(1)}$ is a function of p and q with fixed r: (a) $r = 0.3$; (b) $r = 0.9$

    图 6  Bloch球上单量子比特状态保护的详细过程 (a) 纯态的保护; (b) 混合态的保护

    Fig. 6.  Detailed procedure of the single-qubit state protection process on the Bloch sphere: (a) pure state protection; (b) mixed state protection.

    图 7  ${\rm{fid}}_{{\rm{improve}}({\rm{AD}})}^{(1)}$${\rm{fid}}_{{\rm{improve}}({\rm{PD}})}^{(1)}$与初始纯态和r的关系 (a) ${\rm{fid}}_{{\rm{improve}}({\rm{AD}})}^{(1)}(|\alpha |, ~r)$; (b) ${\rm{fid}}_{{\rm{improve}}({\rm{PD}})}^{(1)}(|\alpha |, ~r)$

    Fig. 7.  ${\rm{fid}}_{{\rm{improve}}({\rm{AD}})}^{(1)}$ and ${\rm{fid}}_{{\rm{improve}}({\rm{PD}})}^{(1)}$ are a function of the initial pure state and r: (a) ${\rm{fid}}_{{\rm{improve}}({\rm{AD}})}^{(1)}(|\alpha |, ~r)$; (b) ${\rm{fid}}_{{\rm{improve}}({\rm{PD}})}^{(1)}(|\alpha |, ~r)$

    图 8  $g_{{\rm{tot}}}^{(2)'}$$g_{{\rm{tot}}}^{(2)}$pr的关系 (a) $g_{{\rm{tot}}}^{(2)'}(p, r)$; (b) $g_{{\rm{tot}}}^{(2)}(p, r)$

    Fig. 8.  $g_{{\rm{tot}}}^{(2)'}$ and $g_{{\rm{tot}}}^{(2)}$ are a function of p and r: (a) $g_{{\rm{tot}}}^{(2)'}(p, r)$; (b) $g_{{\rm{tot}}}^{(2)}(p, r)$

    图 9  $C_{{\rm{improve}}({\rm{AD}})}^{(2)}$$C_{{\rm{improve}}({\rm{PD}})}^{(2)}$与初始纠缠态和r的关系 (a) $C_{{\rm{improve}}({\rm{AD}})}^{(2)}(|\alpha |, r)$; (b) $C_{{\rm{improve}}({\rm{PD}})}^{(2)}(|\alpha |, r)$

    Fig. 9.  $C_{{\rm{improve}}({\rm{AD}})}^{(2)}$ and $C_{{\rm{improve}}({\rm{PD}})}^{(2)}$ are a function of the initial entangled state and r: (a) $C_{{\rm{improve}}({\rm{AD}})}^{(2)}(|\alpha |, r)$; (b) $C_{{\rm{improve}}({\rm{PD}})}^{(2)}(|\alpha |, r)$

    图 10  受保护的量子隐形传态的原理图

    Fig. 10.  Schematic diagram of the protected quantum teleportation

  • [1]

    丛爽, 匡森 2020 量子系统控制理论与方法 (合肥: 中国科学技术大学出版社) 第32–33页

    Cong S, Kuang S 2020 Control Theory and Methods of Quantum Systems (Hefei: Press of University of Science and Technology of China) pp32–33 (in Chinese)

    [2]

    Cardoso E S, de Oliveira M D, Furuya K 2005 Phys. Rev. A 72 042320Google Scholar

    [3]

    Fan H Y, Hu L Y 2009 Opt. Commun. 282 932Google Scholar

    [4]

    刘其功, 计新 2012 物理学报 61 230303Google Scholar

    Liu Q G, Ji X 2012 Acta Phys. Sin. 61 230303Google Scholar

    [5]

    Piao M Z, Ji X 2012 J. Mod. Opt. 59 21Google Scholar

    [6]

    Jahangir R, Arshed N, Toor A H 2015 Quantum Inf. Process. 14 765Google Scholar

    [7]

    杨光, 廉保旺, 聂敏 2015 物理学报 64 010303Google Scholar

    Yang G, Lian B W, Nie M 2015 Acta Phys. Sin. 64 010303Google Scholar

    [8]

    D'Arrigo A, Benenti G, Falci G, Macchiavello C 2015 Phys. Rev. A 92 062342Google Scholar

    [9]

    胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和 2022 物理学报 71 070301Google Scholar

    Hu Q, Zeng B Y, Gu P Y, Jia X Y, Fan D H 2022 Acta Phys. Sin. 71 070301Google Scholar

    [10]

    Harraz S, Cong S, Nieto J J 2022 Int. J. Quantum Inf. 20 2250007Google Scholar

    [11]

    Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594Google Scholar

    [12]

    Kempe J, Bacon D, Lidar D A, Whaley K B 2001 Phys. Rev. A 63 392Google Scholar

    [13]

    Kwiat P G, Berglund A J, Altepeter J B, White A G 2000 Science 290 498Google Scholar

    [14]

    Chen M, Kuang S, Cong S 2017 J. Franklin Inst. 354 439Google Scholar

    [15]

    Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar

    [16]

    Cramer J, Kalb N, Rol M A, Hensen B, Blok M S, Markham M, Twitchen D J, Hanson R, Taminian T H 2016 Nat. Commun. 7 11526Google Scholar

    [17]

    Ofek N, Petrenko A, Heeres R, Reinhold P, Leghtas Z, Vlastakis B, Liu Y, Frunzio L, Girvin S M, Jiang L, Mirrahimi M, Devoret M H, Schoelkopf R J 2016 Nature 536 441Google Scholar

    [18]

    Viola L, Lloyd S 1998 Phys. Rev. A 58 2733Google Scholar

    [19]

    Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417Google Scholar

    [20]

    Du J, Rong X, Zhao N, Wang Y, Yang J, Liu R B 2009 Nature 461 1265Google Scholar

    [21]

    汪野, 张静宁, 金奇奂 2019 物理学报 68 030306Google Scholar

    Wang Y, Zhang J N, Kim K 2019 Acta Phys. Sin. 68 030306Google Scholar

    [22]

    Branczyk A M, Mendonca P E M F, Gilchrist A, Doherty A C, Bartlett S D 2007 Phys. Rev. A 75 012329Google Scholar

    [23]

    Gillett G G, Dalton R B, Lanyon B P, Almeida M P, Barbieri M, Pryde G J, O'Brien J L, Resch K J, Bartlett S D, White A G 2010 Phys. Rev. Lett. 104 080503Google Scholar

    [24]

    Korotkov A N, Keane K 2010 Phys. Rev. A 81 040103Google Scholar

    [25]

    黄江 2017 物理学报 66 010301Google Scholar

    Huang J 2017 Acta Phys. Sin. 66 010301Google Scholar

    [26]

    Wang C Q, Xu B M, Zou J, He Z, Yan Y, Li J G, Shao B 2014 Phys. Rev. A 89 032303Google Scholar

    [27]

    Harraz S, Cong S, Li K 2020 Quantum Inf. Process. 19 250Google Scholar

    [28]

    Harraz S, Cong S, Kuang S 2019 J. Syst. Sci. Complex. 32 1264Google Scholar

    [29]

    Gregoratti M, Werner R F 2003 J. Mod. Opt. 50 915Google Scholar

    [30]

    Wang K, Zhao X, Yu T 2014 Phys. Rev. A 89 042320Google Scholar

    [31]

    Xu X M, Cheng L Y, Liu A P, Su S L, Wang H F, Zhang S 2015 Quantum Inf. Process. 14 4147Google Scholar

    [32]

    Wu H J, Jin Z, Zhu A D 2018 Int. J. Theor. Phys. 57 1235Google Scholar

    [33]

    Harraz S, Cong S, Nieto J J 2021 Eur. Phys. J. Plus 136 851Google Scholar

    [34]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp26–28

  • [1] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [2] 丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏. 基于辅助单比特测量的量子态读取算法. 物理学报, 2021, 70(21): 210303. doi: 10.7498/aps.70.20211066
    [3] 宋悦, 李军奇, 梁九卿. 级联环境下三量子比特量子关联动力学研究. 物理学报, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [4] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响. 物理学报, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [5] 凌中火, 王帅, 张金仓, 张逸竹, 阎天民, 江玉海. 太赫兹辅助测量铷原子超快量子相干过程的理论研究. 物理学报, 2020, 69(17): 173401. doi: 10.7498/aps.69.20200218
    [6] 翁羽翔, 王专, 陈海龙, 冷轩, 朱锐丹. 量子相干态的二维电子光谱测量的原理、应用和发展. 物理学报, 2018, 67(12): 127801. doi: 10.7498/aps.67.20180783
    [7] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [8] 闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂. 基于量子相干效应的无芯射频识别标签的空间散射场测量. 物理学报, 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [9] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [10] 黄江. 弱测量对四个量子比特量子态的保护. 物理学报, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [11] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析. 物理学报, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [12] 宗晓岚, 杨名. 多粒子纠缠的保护方案. 物理学报, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [13] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析. 物理学报, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [14] 王美姣, 夏云杰. 在有限温度下运用弱测量保护量子纠缠. 物理学报, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [15] 东晨, 赵尚弘, 张宁, 董毅, 赵卫虎, 刘韵. 奇相干光源的测量设备无关量子密钥分配研究. 物理学报, 2014, 63(20): 200304. doi: 10.7498/aps.63.200304
    [16] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干. 物理学报, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [17] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [18] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [19] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [20] 林翔鸿;卞祖和;唐孝威. 用低能弱r源测量电子对的近阈产生截面. 物理学报, 1989, 38(8): 1364-1368. doi: 10.7498/aps.38.1364
计量
  • 文章访问数:  3936
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-07-13
  • 上网日期:  2022-11-02
  • 刊出日期:  2022-11-20

/

返回文章
返回