搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于辅助单比特测量的量子态读取算法

丁晨 李坦 张硕 郭楚 黄合良 鲍皖苏

引用本文:
Citation:

基于辅助单比特测量的量子态读取算法

丁晨, 李坦, 张硕, 郭楚, 黄合良, 鲍皖苏

A quantum state readout method based on a single ancilla qubit

Ding Chen, Li Tan, Zhang Shuo, Guo Chu, Huang He-Liang, Bao Wan-Su
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在量子计算过程中, 需要通过量子测量读取计算结果. 然而, 受限于物理实现, 对量子态的测量往往存在较大误差, 直接影响量子计算结果的正确提取, 以及限制量子计算的大规模扩展. 本文针对一种特定形式的量子态, 提出基于辅助单比特测量的量子态间接读取算法, 避免多比特测量带来的大量测量误差. 理论和模拟结果表明, 当所读取的量子态比特数较大时, 该算法相比于直接读取具有更高的正确率, 可用于大规模量子纠错和量子态的高保真度读取.
    Quantum state measurement is essential for reading-out a quantum computing outcome. Meanwhile, the readout results are always affected by the large noise of quantum measurements in physical implementation, which also hinders the large-scale expansion of quantum computing. In light of this, we present an indirect quantum state readout method based on a single ancilla qubit that can avoid the large noise of multiple-qubit measurements. The theoretical analysis and simulations indicate that our method is more robust against the measurement noise and promises to become a method of large-scale quantum error correction and high-fidelity quantum state readout.
      通信作者: 黄合良, quanhhl@ustc.edu.cn ; 鲍皖苏, bws@qiclab.cn
    • 基金项目: 青年人才托举工程 (批准号: 2020-JCJQ-QT-030)、国家自然科学基金(批准号: 11905294, 11805279)、国防科技大学高性能计算国家重点实验室开放课题(批准号: 201901-01)和中国博士后科学基金资助的课题
      Corresponding author: Huang He-Liang, quanhhl@ustc.edu.cn ; Bao Wan-Su, bws@qiclab.cn
    • Funds: Project supported by the Youth Talent Lifting Project, China (Grant No. 2020-JCJQ-QT-030), the National Natural Science Foundation of China (Grant Nos. 11905294, 11805279), the Open Research Fund from State Key Laboratory for High Performance Computing, National University of Defense Technology, China (Grant No. 201901-01), and the China Postdoctoral Science Foundation.
    [1]

    Shor P W 1994 Proceedings 35th Annual Symposium Foundations Computer Science Santa Fe, New Mexico, USA, November 20–22, 1994 pp124–134

    [2]

    Grover L K 1996 Proceedings 28th Annual ACM Symposium Theory Computing Philadelphia, Pennsylvania, USA, May 22–24, 1996 pp212–219

    [3]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [4]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [5]

    Huang H L, Narożniak M, Liang F, Zhao Y, Castellano A D, Gong M, Wu Y, Wang S, Lin J, Xu Y, Deng H, Rong H, Dowling J P, Peng C Z, Byrnes T, Zhu X, Pan J W 2021 Phys. Rev. Lett. 126 090502Google Scholar

    [6]

    Huang H L, Wu D, Fan D, Zhu X 2020 Sci. China Inf. Sci. 63 180501Google Scholar

    [7]

    Kjaergaard M, Schwartz M E, Braumjller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Annu. Rev. Condens. Matter Phys. 11 369Google Scholar

    [8]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [9]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718–719 1Google Scholar

    [10]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [11]

    You J Q, Nori F 2005 Phys. Today 58 42Google Scholar

    [12]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [13]

    Nation P D, Johansson J R, Blencowe M P, Nori F 2012 Rev. Mod. Phys. 84 1Google Scholar

    [14]

    O’Brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [15]

    Liu C, Huang H L, Chen C, Wang B Y, Wang X L, Yang T, Li L, Liu N L, Dowling J P, Byrnes T, Lu C Y, Pan J W 2019 Optica 6 264Google Scholar

    [16]

    Huang H L, Luo Y H, Bai B, Deng Y H, Wang H, Zhao Q, Zhong H S, Nie Y Q, Jiang W H, Wang X L, Zhang J, Li L, Liu N L, Byrnes T, Dowling J P, Lu C Y, Pan J W 2019 Phys. Rev. A 100 012114Google Scholar

    [17]

    Huang H L, Bao W S, Guo C 2019 Phys. Rev. A 100 032305Google Scholar

    [18]

    Huang H L, Wang X L, Rohde P P, Luo Y H, Zhao Y W, Liu C, Li L, Liu N L, Lu C Y, Pan J W 2018 Optica 5 193Google Scholar

    [19]

    Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502Google Scholar

    [20]

    Huang H L, Zhong H S, Li T, Li F G, Fu X Q, Zhang S, Wang X, Bao W S 2017 Sci. Rep. 7 15265Google Scholar

    [21]

    Huang H L, Bao W S, Li T, Li F G, Fu X Q, Zhang S, Zhang H L, Wang X 2017 Phys. Lett. A 381 2673Google Scholar

    [22]

    Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Höfling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar

    [23]

    He Y, Ding X, Su Z E, Huang H L, Qin J, Wang C, Unsleber S, Chen C, Wang H, He Y M, Wang X L, Zhang W J, Chen S J, Schneider C, Kamp M, You L X, Wang Z, Höfling S, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 118 190501Google Scholar

    [24]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502Google Scholar

    [25]

    Häffner H, Roos C F, Blatt R 2008 Phys. Rep. 469 155Google Scholar

    [26]

    Kane B E 1998 Nature 393 133Google Scholar

    [27]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [28]

    Bloch I 2008 Nature 453 1016Google Scholar

    [29]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [30]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [31]

    Guo C, Zhao Y, Huang H L 2021 Phys. Rev. Lett. 126 070502Google Scholar

    [32]

    Guo C, Liu Y, Xiong M, Xue S, Fu X, Huang A, Qiang X, Xu P, Liu J, Zheng S, Huang H L, Deng M, Poletti D, Bao W S, Wu J 2019 Phys. Rev. Lett. 123 190501Google Scholar

    [33]

    Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H L, Huo Y H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Zhu Q, Lu C Y, Peng C Z, Zhu X, Pan J W 2021 arXiv2106.14734[quant-ph]

    [34]

    Liu Y, Wang D, Xue S, Huang A, Fu X, Qiang X, Xu P, Huang H L, Deng M, Guo C, Yang X, Wu J 2020 Phys. Rev. A 101 052316Google Scholar

    [35]

    Huang H L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y, Yang R, Liu T, Hsieh M H, Deng H, Rong H, Peng C Z, Lu C Y, Chen Y A, Tao D, Zhu X, Pan J W 2021 Phys. Rev. Appl. 16 024051

    [36]

    Liu J, Lim K H, Wood K L, Huang W, Guo C, Huang H L 2021 Sci. China-Phys. Mech. Astron. 64 290311Google Scholar

    [37]

    Huang H L, Zhao Q, Ma X, Liu C, Su Z E, Wang X L, Li L, Liu N L, Sanders B C, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 119 050503Google Scholar

    [38]

    Huang H L, Bao W S, Li T, Li F G, Fu X Q, Zhang S, Zhang H L, Wang X 2017 Quantum Inf. Proc. 16 199Google Scholar

    [39]

    Huang H L, nad Tan Li Y W Z, Li F G, Du Y T, Fu X Q, Zhang S, Wang X, Bao W S 2017 Front. Phys. 12 120305Google Scholar

    [40]

    Abraham H, Akhalwaya I Y, Aleksandrowicz G, et al. 2019 Qiskit: An Open-source Framework for Quantum Computing

  • 图 1  两个算法随机读取多比特量子态的平均正确概率. 在左图中, 测量噪声$\eta$固定为0.05, 研究平均正确概率随测量噪声n的变化. 在右图中, 比特数n固定为3, 研究平均正确概率随测量噪声$\eta$的变化. 平均正确概率的计算方法为随机抽取1000个量子态计算对应的$P_1$$P_2$, 并取平均

    Fig. 1.  Average probability of correctness of the two algorithms reading a n-qubit quantum state. In the left subgraph, the number of qubits is 3, and we investigate the dependence of average probability of correctness on the readout noise $\eta$. In the right subgraph, the readout noise $\eta=0.05$, and we investigate the dependence of average probability of correctness on the number of qubits. The values of average probability of correctness are calculated as the average of $P_1$ and $P_2$ on 1000 reading instances.

    图 2  两个算法在多种情况下的正确率比较. 其中实线是正确率, 色带是95%置信区间. 图例中, direct代表直接测量, our代表算法2

    Fig. 2.  Correctness rates of two algorithms under multiple circumstances. In the graph, the lines represent the correctness rates while the bands represent the 95% confidence intervals. In the legend, “direct” represents the direct method, “our” represents Alg. 2

  • [1]

    Shor P W 1994 Proceedings 35th Annual Symposium Foundations Computer Science Santa Fe, New Mexico, USA, November 20–22, 1994 pp124–134

    [2]

    Grover L K 1996 Proceedings 28th Annual ACM Symposium Theory Computing Philadelphia, Pennsylvania, USA, May 22–24, 1996 pp212–219

    [3]

    Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502Google Scholar

    [4]

    Clarke J, Wilhelm F K 2008 Nature 453 1031Google Scholar

    [5]

    Huang H L, Narożniak M, Liang F, Zhao Y, Castellano A D, Gong M, Wu Y, Wang S, Lin J, Xu Y, Deng H, Rong H, Dowling J P, Peng C Z, Byrnes T, Zhu X, Pan J W 2021 Phys. Rev. Lett. 126 090502Google Scholar

    [6]

    Huang H L, Wu D, Fan D, Zhu X 2020 Sci. China Inf. Sci. 63 180501Google Scholar

    [7]

    Kjaergaard M, Schwartz M E, Braumjller J, Krantz P, Wang J I J, Gustavsson S, Oliver W D 2020 Annu. Rev. Condens. Matter Phys. 11 369Google Scholar

    [8]

    Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, Oliver W D 2019 Appl. Phys. Rev. 6 021318Google Scholar

    [9]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718–719 1Google Scholar

    [10]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [11]

    You J Q, Nori F 2005 Phys. Today 58 42Google Scholar

    [12]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [13]

    Nation P D, Johansson J R, Blencowe M P, Nori F 2012 Rev. Mod. Phys. 84 1Google Scholar

    [14]

    O’Brien J L, Furusawa A, Vučković J 2009 Nat. Photonics 3 687Google Scholar

    [15]

    Liu C, Huang H L, Chen C, Wang B Y, Wang X L, Yang T, Li L, Liu N L, Dowling J P, Byrnes T, Lu C Y, Pan J W 2019 Optica 6 264Google Scholar

    [16]

    Huang H L, Luo Y H, Bai B, Deng Y H, Wang H, Zhao Q, Zhong H S, Nie Y Q, Jiang W H, Wang X L, Zhang J, Li L, Liu N L, Byrnes T, Dowling J P, Lu C Y, Pan J W 2019 Phys. Rev. A 100 012114Google Scholar

    [17]

    Huang H L, Bao W S, Guo C 2019 Phys. Rev. A 100 032305Google Scholar

    [18]

    Huang H L, Wang X L, Rohde P P, Luo Y H, Zhao Y W, Liu C, Li L, Liu N L, Lu C Y, Pan J W 2018 Optica 5 193Google Scholar

    [19]

    Wang X L, Luo Y H, Huang H L, Chen M C, Su Z E, Liu C, Chen C, Li W, Fang Y Q, Jiang X, Zhang J, Li L, Liu N L, Lu C Y, Pan J W 2018 Phys. Rev. Lett. 120 260502Google Scholar

    [20]

    Huang H L, Zhong H S, Li T, Li F G, Fu X Q, Zhang S, Wang X, Bao W S 2017 Sci. Rep. 7 15265Google Scholar

    [21]

    Huang H L, Bao W S, Li T, Li F G, Fu X Q, Zhang S, Zhang H L, Wang X 2017 Phys. Lett. A 381 2673Google Scholar

    [22]

    Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, Höfling S, Lu C Y, Pan J W 2017 Nat. Photonics 11 361Google Scholar

    [23]

    He Y, Ding X, Su Z E, Huang H L, Qin J, Wang C, Unsleber S, Chen C, Wang H, He Y M, Wang X L, Zhang W J, Chen S J, Schneider C, Kamp M, You L X, Wang Z, Höfling S, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 118 190501Google Scholar

    [24]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502Google Scholar

    [25]

    Häffner H, Roos C F, Blatt R 2008 Phys. Rep. 469 155Google Scholar

    [26]

    Kane B E 1998 Nature 393 133Google Scholar

    [27]

    He Y, Gorman S K, Keith D, Kranz L, Keizer J G, Simmons M Y 2019 Nature 571 371Google Scholar

    [28]

    Bloch I 2008 Nature 453 1016Google Scholar

    [29]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [30]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [31]

    Guo C, Zhao Y, Huang H L 2021 Phys. Rev. Lett. 126 070502Google Scholar

    [32]

    Guo C, Liu Y, Xiong M, Xue S, Fu X, Huang A, Qiang X, Xu P, Liu J, Zheng S, Huang H L, Deng M, Poletti D, Bao W S, Wu J 2019 Phys. Rev. Lett. 123 190501Google Scholar

    [33]

    Wu Y, Bao W S, Cao S, Chen F, Chen M C, Chen X, Chung T H, Deng H, Du Y, Fan D, Gong M, Guo C, Guo C, Guo S, Han L, Hong L, Huang H L, Huo Y H, Li L, Li N, Li S, Li Y, Liang F, Lin C, Lin J, Qian H, Qiao D, Rong H, Su H, Sun L, Wang L, Wang S, Wu D, Xu Y, Yan K, Yang W, Yang Y, Ye Y, Yin J, Ying C, Yu J, Zha C, Zhang C, Zhang H, Zhang K, Zhang Y, Zhao H, Zhao Y, Zhou L, Zhu Q, Lu C Y, Peng C Z, Zhu X, Pan J W 2021 arXiv2106.14734[quant-ph]

    [34]

    Liu Y, Wang D, Xue S, Huang A, Fu X, Qiang X, Xu P, Huang H L, Deng M, Guo C, Yang X, Wu J 2020 Phys. Rev. A 101 052316Google Scholar

    [35]

    Huang H L, Du Y, Gong M, Zhao Y, Wu Y, Wang C, Li S, Liang F, Lin J, Xu Y, Yang R, Liu T, Hsieh M H, Deng H, Rong H, Peng C Z, Lu C Y, Chen Y A, Tao D, Zhu X, Pan J W 2021 Phys. Rev. Appl. 16 024051

    [36]

    Liu J, Lim K H, Wood K L, Huang W, Guo C, Huang H L 2021 Sci. China-Phys. Mech. Astron. 64 290311Google Scholar

    [37]

    Huang H L, Zhao Q, Ma X, Liu C, Su Z E, Wang X L, Li L, Liu N L, Sanders B C, Lu C Y, Pan J W 2017 Phys. Rev. Lett. 119 050503Google Scholar

    [38]

    Huang H L, Bao W S, Li T, Li F G, Fu X Q, Zhang S, Zhang H L, Wang X 2017 Quantum Inf. Proc. 16 199Google Scholar

    [39]

    Huang H L, nad Tan Li Y W Z, Li F G, Du Y T, Fu X Q, Zhang S, Wang X, Bao W S 2017 Front. Phys. 12 120305Google Scholar

    [40]

    Abraham H, Akhalwaya I Y, Aleksandrowicz G, et al. 2019 Qiskit: An Open-source Framework for Quantum Computing

  • [1] 杨晓堃, 李维, 黄永畅. 量子博弈—“PQ”问题. 物理学报, 2024, 73(3): 030301. doi: 10.7498/aps.73.20230592
    [2] 吴宇恺, 段路明. 离子阱量子计算规模化的研究进展. 物理学报, 2023, 72(23): 230302. doi: 10.7498/aps.72.20231128
    [3] 范桁. 量子计算纠错取得突破性进展. 物理学报, 2023, 72(7): 070303. doi: 10.7498/aps.72.20230330
    [4] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [5] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [6] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [7] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [8] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [9] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [10] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [11] 温永立, 张善超, 颜辉, 朱诗亮. 无指针δ-淬火直接测量法测量量子密度矩阵. 物理学报, 2021, 70(11): 110301. doi: 10.7498/aps.70.20210269
    [12] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [13] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [14] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算. 物理学报, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [15] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [16] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [17] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [18] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [19] 黄仙山, 谢双媛, 羊亚平. 量子测量对三维光子晶体中Λ型原子动力学性质的影响. 物理学报, 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [20] 胡学宁, 李新奇. 量子点接触对单电子量子态的量子测量. 物理学报, 2006, 55(7): 3259-3264. doi: 10.7498/aps.55.3259
计量
  • 文章访问数:  7094
  • PDF下载量:  300
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-04
  • 修回日期:  2021-07-23
  • 上网日期:  2021-10-19
  • 刊出日期:  2021-11-05

/

返回文章
返回