-
By using a superconducting processor, Google Quantum AI group demonstrated that a logic qubit realized by surface code of quantum error correction performs better when the number of physical qubits increases. Two surface codes to encode logic qubits for scaling are realized experimentally, with multiple cycles of quantum error correcting assisted by ancillary qubits. This result can be considered as an important step toward fault-tolerant quantum computers. In this review paper, we introduce briefly the mechanism of quantum error correction. As an example, Shor’s nine-qubit error correction code is explained. Then, the new experiments of Google quantum AI group are introduced to show their significance in scaling. The advances in other quantum error correction experiments are also reviewed. Finally, the development of quantum computers is discussed.
-
Keywords:
- quantum error correction /
- quantum computation /
- logic qubit
[1] Google Quantum AI 2023 Nature 614 676Google Scholar
[2] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[3] Shor P W S 1995 Phys. Rev. A 52 R2493Google Scholar
[4] Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar
[5] Cory D G, Price M D, Maas W, Knill E, Laflamme R, Zurek W H, Havel T F, Somarooet S S 1998 Phys. Rev. Lett. 81 2152Google Scholar
[6] Knill E, Laflamme R, Martinez R, Negrevergneet C 2001 Phys. Rev. Lett. 86 5811Google Scholar
[7] Nigg D, Müller M, Martinez E A, Schindler P, Hennrich M, Monz T, Martin-Delgado A, Blatt R 2014 Science 345 302Google Scholar
[8] Ryan-Anderson C, Bohnet J G, Lee K, et al. 2021 Phys. Rev. X 11 041058
[9] Bluvstein D, Levine H, Semeghini G, et al. 2022 Nature 604 451Google Scholar
[10] Krinner S, Lacroix N, Remm A, et al. 2022 Nature 605 669Google Scholar
[11] Zhao Y W, Ye Y S, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501Google Scholar
[12] Ni Z C, Li S, Deng X W, et al. 2023 Nature https://doi. org/10.1038/s41586-023-05784-4
[13] Preskill J 2018 Quantum 2 79Google Scholar
[14] Kai X, Fan H 2022 Chin. Phys. B 31 100304Google Scholar
[15] 范桁 2018 物理学报 67 120301Google Scholar
Fan H 2018 Acta Phys. Sin. 67 120301Google Scholar
-
[1] Google Quantum AI 2023 Nature 614 676Google Scholar
[2] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[3] Shor P W S 1995 Phys. Rev. A 52 R2493Google Scholar
[4] Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar
[5] Cory D G, Price M D, Maas W, Knill E, Laflamme R, Zurek W H, Havel T F, Somarooet S S 1998 Phys. Rev. Lett. 81 2152Google Scholar
[6] Knill E, Laflamme R, Martinez R, Negrevergneet C 2001 Phys. Rev. Lett. 86 5811Google Scholar
[7] Nigg D, Müller M, Martinez E A, Schindler P, Hennrich M, Monz T, Martin-Delgado A, Blatt R 2014 Science 345 302Google Scholar
[8] Ryan-Anderson C, Bohnet J G, Lee K, et al. 2021 Phys. Rev. X 11 041058
[9] Bluvstein D, Levine H, Semeghini G, et al. 2022 Nature 604 451Google Scholar
[10] Krinner S, Lacroix N, Remm A, et al. 2022 Nature 605 669Google Scholar
[11] Zhao Y W, Ye Y S, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501Google Scholar
[12] Ni Z C, Li S, Deng X W, et al. 2023 Nature https://doi. org/10.1038/s41586-023-05784-4
[13] Preskill J 2018 Quantum 2 79Google Scholar
[14] Kai X, Fan H 2022 Chin. Phys. B 31 100304Google Scholar
[15] 范桁 2018 物理学报 67 120301Google Scholar
Fan H 2018 Acta Phys. Sin. 67 120301Google Scholar
计量
- 文章访问数: 5289
- PDF下载量: 247
- 被引次数: 0