搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温水系碱金属离子电池的研究进展

韩帅 郭秋卜 陆雅翔 陈立泉 胡勇胜

引用本文:
Citation:

低温水系碱金属离子电池的研究进展

韩帅, 郭秋卜, 陆雅翔, 陈立泉, 胡勇胜

Recent progress in aqueous akali-metal-ion batteries at low temperatures

Han Shuai, Guo Qiu-Bo, Lu Ya-Xiang, Chen Li-Quan, Hu Yong-Sheng
PDF
HTML
导出引用
  • 水系碱金属离子电池因具有高安全性、低成本和环境友好等优势而成为前沿研究的热点之一, 在大规模储能领域具有良好的应用前景. 然而, 许多水系碱金属离子电池在低温条件下出现运行故障或展现出极低的放电比容量, 严重限制了其在恶劣的严寒气候条件下的广泛应用. 本综述首先梳理了近年来低温水系碱金属离子电池的研究进展. 随后从电解液、电极和界面三个方面分别探讨了水系碱金属离子电池在低温下运行所面对的挑战和相应的失效机制, 同时系统地介绍了提高电池低温性能的改性策略并加以评述, 以期为水系碱金属离子电池低温性能的进一步提升及其实际应用提供参考并指明方向.
    Aqueous alkali-metal-ion batteries are a popular frontier research area, expected to apply for large-scale energy storage due to their high safety, low cost, and environmental friendliness. Depending on diversified social development, batteries ought to function in various ambient, including polar regions and high-altitude locales. Delivering excellent electrochemical performance at low temperatures is crucial to develop aqueous alkali-metal-ion batteries. This review summarizes the representative research progress in the field of aqueous low-temperature alkali-metal-ion batteries in recent years, based on the subjects of electrolyte, electrode, and interface. Firstly, we discussed the challenges of aqueous alkali-metal-ion batteries operated at low temperatures and the corresponding failure mechanisms. At subzero temperatures, aqueous alkali-metal-ion batteries couldn't work or exhibit little capacity, arising from the frozen electrolytes, electrode materials with slow kinetics, and huge interface impedances, which seriously limits their wide application in low-temperature conditions. Then, combined with the latest research work, various strategies have been investigated to improve the electrochemical performance of batteries at low temperatures. To date, the strategies for reducing the freezing point of electrolytes have primarily focused on breaking H-bonds between free water molecules by increasing salt concentration, adding organic/inorganic additives, and using hydrogel as electrolytes. In terms of electrodes, the related studies have concentrated on regulating the structure and morphology of electrodes, introducing the dual ion battery mechanism, and using organic materials and Zn electrodes to alleviate the slow ion dynamics of electrodes. In addition, adding appropriate organic solvents that can generate protective layers with low interface impedance on the electrode surface in the electrolyte can also improve the low-temperature performance of aqueous alkali-metal-ion batteries. Finally, we evaluated multi-dimensionally all strategies, expected to provide a comprehensive reference and point out the direction for the further improvement and practical application of the aqueous alkali-metal-ion batteries at low temperatures.
      通信作者: 陆雅翔, yxlu@iphy.ac.cn ; 胡勇胜, yshu@iphy.ac.cn
      作者简介:
      陆雅翔, 中国科学院物理研究所副研究员, 博士生导师, 科技部重点研发计划(青年项目)首席科学家, 国家优秀青年科学基金获得者. 主要从事二次电池关键材料、界面性质及器件构筑等相关研究工作. 近五年在ScienceNature Energy等国内外重要学术期刊上发表学术论文50余篇, H-因子36. 已授权中国发明专利10余项, 出版《钠离子电池科学与技术》专著一部(2/3), 主持国家自然科学基金面上项目、北京市自然科学基金面上项目和企业前瞻性战略研发项目等. 担任Nano Research, Batteries期刊青年编委. 荣获华为技术有限公司“优秀创新人才奖”(2020), 北京市科学技术协会“首都前沿学术成果”奖(2022)和北京市科学技术奖自然科学奖一等奖(2022, 2/9)等多项学术荣誉和奖励
      胡勇胜, 中国科学院物理研究所研究员, 中科海钠创始人, 英国皇家化学学会会士, 英国物理学会会士. 先后承担国家科技部863创新团队、国家杰出青年科学基金等项目. 自2001年以来, 主要从事先进二次电池的应用基础研究, 立足科学前沿和聚焦国家重大需求, 注重基础与应用, 在钠(锂)离子电池正负极材料、多尺度结构演化、功能电解质材料等方面取得多项创新性研究结果. 在ScienceNature EnergyNature Mater.、JouleScience Adv.等国际重要学术期刊上共合作发表论文200余篇, 引用30000余次, H-因子90, 连续7年入选科睿唯安 “高被引科学家”名录. 合作申请60余项中国发明专利、已授权40项专利(包括多项美国、日本、欧盟专利). 目前担任ACS Energy Letters杂志资深编辑. 最近所获荣誉与奖励包括第十四届中国青年科技奖、国际电化学学会Tajima Prize、英国皇家学会牛顿高级访问学者, 北京市科学技术奖自然科学奖一等奖等. 入选2020年度中国科学十大进展30项候选成果, 合著《钠离子电池科学与技术》专著一部
    • 基金项目: 北京市自然科学基金(批准号: 2212022)、国家自然科学基金 (批准号: 51725206, 52122214, 52072403)、中国科学院青年创新促进会 (批准号: 2020006)和江苏省碳峰值与中性创新计划(产业攻关前景与关键技术)(批准号: BE2022002-5)资助的课题.
      Corresponding author: Lu Ya-Xiang, yxlu@iphy.ac.cn ; Hu Yong-Sheng, yshu@iphy.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 2212022), the National Natural Science Foundation of China (Grant Nos. 51725206, 52122214, 52072403), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2020006), and the Jiangsu Provincial Carbon Peak and Neutrality Innovation Program (Industry Tackling on Prospect and Key Technology), China (Grant No. BE2022002-5).
    [1]

    Dunn B, Kamath H, Tarascon J M 2011 Science 334 928Google Scholar

    [2]

    Larcher D, Tarascon J M 2015 Nat. Chem. 7 19Google Scholar

    [3]

    Goodenough J B 2013 Acc. Chem. Res. 46 1053Google Scholar

    [4]

    Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F 2016 J. Power Sources 306 178Google Scholar

    [5]

    Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K 2014 Chem. Rev. 114 11788Google Scholar

    [6]

    Tang W, Zhu Y, Hou Y, Liu L, Wu Y, Loh K P, Zhang H, Zhu K 2013 Energy Environ. Sci. 6 2093Google Scholar

    [7]

    Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K 2015 Science 350 938Google Scholar

    [8]

    Yue J, Suo L 2021 Energy Fuels 35 9228Google Scholar

    [9]

    Zhang S, Xu K, Jow T 2003 J. Power Sources 115 137Google Scholar

    [10]

    Gao H N, Zhao Z G, Cai Y D, Zhou J J, Hua W D, Chen L, Wang L, Zhang J Q, Han D, Liu M J, Jiang L 2017 Nat. Commun. 8 15911Google Scholar

    [11]

    Jiang L, Lu Y, Zhao C, Liu L, Zhang J, Zhang Q, Shen X, Zhao J, Yu X, Li H, Huang X, Chen L, Hu Y S 2019 Nat. Energy 4 495Google Scholar

    [12]

    Wang H, Zhang H, Cheng Y, Feng K, Li X, Zhang H 2018 Electrochim. Acta 278 279Google Scholar

    [13]

    Zhang Y, Xu J, Li Z, Wang Y, Wang S, Dong X, Wang Y 2022 Sci. Bull. 67 161Google Scholar

    [14]

    Zhu K J, Sun Z Q, Jin T, Chen X C, Si Y C, Li H X, Jiao L F 2022 Batteries Supercaps 5 202200308

    [15]

    Nian Q, Wang J, Liu S, Sun T, Zheng S, Zhang Y, Tao Z, Chen J 2019 Angew. Chem. Int. Ed. 58 16994Google Scholar

    [16]

    Ma Z, Chen J, Vatamanu J, Borodin O, Bedrov D, Zhou X, Zhang W, Li W, Xu K, Xing L 2022 Energy Storage Materials 45 903

    [17]

    Liu T, Liu K-T, Wang J, Ji X, Lan P, Mu Z, Pan Y, Cheng S, Liu M 2021 Energy Storage Materials 41 133

    [18]

    Hu Y, Shi R W, Ren Y Y, Peng W S, Feng C D, Zhao Y, Zheng S J, Li W Z, Sun Z, Guo J N, Guo S Y, Wang X L, Yan F 2022 Adv. Funct. Mater. 32 2203081Google Scholar

    [19]

    Tron A, Jeong S, Park Y D, Mun J 2019 ACS Sustainable Chem. Eng. 7 14531Google Scholar

    [20]

    Liang G, Gan Z, Wang X, Jin X, Xiong B, Zhang X, Chen S, Wang Y, He H, Zhi C 2021 ACS Nano 15 17717Google Scholar

    [21]

    Zhu K, Sun Z, Li Z, Liu P, Chen X, Jiao L 2022 Energy Storage Mater. 53 523Google Scholar

    [22]

    Sun T, Liu C, Wang J, Nian Q, Feng Y, Zhang Y, Tao Z, Chen J 2020 Nano Res. 13 676Google Scholar

    [23]

    Sun Y, Zhang Y, Xu Z, Gou W, Han X, Liu M, Li CM 2022 ChemSusChem 202201362

    [24]

    Zhu M, Wang X, Tang H, Wang J, Hao Q, Liu L, Li Y, Zhang K, Schmidt O G 2020 Adv. Funct. Mater. 30 1907218Google Scholar

    [25]

    Yan C, Wang Y, Deng X, Xu Y 2022 Nano-Micro Lett. 14 98Google Scholar

    [26]

    Wang M, Li T, Yin Y, Yan J, Zhang H, Li X 2022 Adv. Energy Mater. 12 2200728Google Scholar

    [27]

    Nian Q, Liu S, Liu J, Zhang Q, Shi J, Liu C, Wang R, Tao Z, Chen J 2019 ACS Appl. Energy Mater. 2 4370Google Scholar

    [28]

    Liu S, Lei T, Song Q, Zhu J, Zhu C 2022 ACS Appl. Mater. Interfaces 14 11425Google Scholar

    [29]

    Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta AM, Pietrucci F 2017 Phys. Rev. Lett. 119 245701Google Scholar

    [30]

    Leadbetter A, Ward R, Clark J, Tucker P, Matsuo T, Suga H 1985 J. Chem. Phys. 82 424Google Scholar

    [31]

    Reber D, Kühnel R S, Battaglia C 2019 ACS Mater. Lett. 1 44Google Scholar

    [32]

    Becker M, Kühnel R S, Battaglia C 2019 ChemComm 55 12032Google Scholar

    [33]

    Liu J, Yang C, Chi X, Wen B, Wang W, Liu Y 2022 Adv. Funct. Mater. 32 2106811Google Scholar

    [34]

    Reber D, Borodin O, Becker M, Rentsch D, Thienenkamp J H, Grissa R, Zhao W, Aribia A, Brunklaus G, Battaglia C 2022 Adv. Funct. Mater. 32 2112138Google Scholar

    [35]

    Bi H, Wang X, Liu H, He Y, Wang W, Deng W, Ma X, Wang Y, Rao W, Chai Y, Ma H, Li R, Chen J, Wang Y, Xue M 2020 Adv. Mater. 32 2000074Google Scholar

    [36]

    Zhu K, Li Z, Sun Z, Liu P, Jin T, Chen X, Li H, Lu W, Jiao L 2022 Small 18 2107662Google Scholar

    [37]

    Ao H, Zhao Y, Zhou J, Cai W, Zhang X, Zhu Y, Qian Y 2019 J. Mater. Chem. A 7 18708Google Scholar

    [38]

    Ramanujapuram A, Yushin G 2018 Adv. Energy Mater. 8 1802624Google Scholar

    [39]

    Chen J, Vatamanu J, Xing L, Borodin O, Chen H, Guan X, Liu X, Xu K, Li W 2020 Adv. Energy Mater. 10 1902654Google Scholar

    [40]

    Liu T, Zhang M, Wang Y L, Wang Q Y, Lü C, Liu K X, Suresh S, Yin Y H, Hu Y Y, Li Y S, Liu X B, Zhong X W, Xia B Y, Wu Z P 2018 Adv. Energy Mater. 8 1802349Google Scholar

    [41]

    Lee J, Lee C L, Park K, Kim I D 2014 J. Power Sources 248 1211Google Scholar

    [42]

    Madzvamuse A, Hamenu L, Mohammed L, Ko JM 2018 ChemistrySelect 3 10805Google Scholar

  • 图 1  (a) 近几年与低温水系碱金属离子电池相关的文章数量统计; (b) 水系碱金属离子电池的低温发展策略总结

    Fig. 1.  (a) The number of articles related to aqueous alkali-metal-ion batteries at low temperatures in recent years; (b) the strategies for alkali metal-ions batteries at low temperatures.

    图 2  (a) 35 m LiFSI, 25 m LiFSI+10 m LiFTFSI, 25 m LiFSI+10 m LiTFSI的DSC曲线[31]; (b) 25 m LiFSI+10 m LiFTFSI电解液和25 m LiFSI+10 m LiTFSI电解液在0 °C下保存4周后的照片[31]; (c) LiPTFSI, LiOTf及其二元混合物的水溶液的相图[32]; (d) 水/DMSO (χDMSO = 0.30)混合物的DSC曲线(在水溶液中加入摩尔分数为0.3的DMSO)[15]; (e)—(g) 三种全电池在25和–50 ℃的充放电曲线[15]; (h) Na2CoFe(CN)6//AC 全电池在25和–30 ℃下的充放电曲线[36]; (i) LTP@C //PIL-OH 水凝胶//AC 全电池在不同温度下的充放电曲线[18]; (j) 全电池连续在不同温度下循环的容量变化[18]

    Fig. 2.  (a) DSC curves of different electrolytes (35 m LiFSI, 25 m LiFSI+10 m LiFTFSI, 25 m LiFSI+10 m LiTFSI) between 60 and –120 ℃[31]; (b) the optical photographs of 25 m LiFSI+10 m LiFTFSI and 25 m LiFSI+10 m LiTFSI after storage at 0 ℃ for 4 weeks[31]; (c) the phase diagrams of aqueous solutions of LiPTFSI, LiOTf, and their binary mixtures[32]; (d) the DSC result of χDMSO = 0.3 electrolyte solvent[15]; (e)–(g) GCD curves of different batteries at 25 and –50 ℃[15]; (h) the GCD curves of the Na2CoFe(CN)6//AC full cells at 25 and –30 ℃ for different cycles[36]; (i) the GCD curves of LTP@C //PIL-OH hydrogel//AC full cells at different temperatures[18]; (j) the capacity change for the full cells cycled at different temperatures continuously[18]

    图 3  (a) α-V2O5和δ-K0.5V2O5 (KVO) 两种电极的CV曲线[20]; (b)—(d) δ-K0.5V2O5 (KVO) 电极的三种可能的离子扩散路径示意图[20]; (e)—(g) 三种路径对应的K+传输势垒[20]; (h) α-V2O5和δ0-V2O5 (KVO) 两种电极的电子结构[20]; (i) 不同温度下的δ-K0.5V2O5 (KVO)//PTCDI 软包全电池充放电曲线[20]

    Fig. 3.  (a) The CV curves of α-V2O5 and reconstructed δ-K0.5V2O5 (KVO) electrodes[20]; (b)–(d) the schematics of three possible pathways for K-ion diffusion[20]; (e)–(g) the transport energy batteries of three kinds of K+ pathways[20]; (h) the electronic structure results of α-V2O5 and δ0-V2O5 (KVO) electrodes from DOS calculating[20]; (i) the GCD curves of δ-K0.5V2O5 (KVO)//PTCDI full batteries at different temperatures[20].

    图 4  (a) PT电极的晶体结构[13]; (b) PT电极在不同电流密度下的充放电曲线[13]; (c) NiHCF//17 m NaClO4//PT全电池在不同电流密度下的充放电曲线[13]; (d) PANI//3 ZC6 LC//Zn全电池在–30和–50 ℃下的充放电曲线[25]; (e) PANI//Zn全电池在–50 ℃下的循环性能[25]

    Fig. 4.  (a) The crystal structure of the PT electrode[13]; (b) the GCD curves of PT electrode at different current densities[13]; (c) the GCD curves of NiHCF//17 m NaClO4//PT full cells at different current densities[13]; (d) the GCD curves of PANI//3 ZC6 LC//Zn full cells at –30 and –50 ℃[25]; (e) the cycle performance of PANI//Zn full cells at –50 ℃[25].

    图 5  (a) Ni(OH)2//2 m NaClO4//NaTi2(PO4)3(NTP@C)双离子电池机理示意图[27]; (b) Ni(OH)2//NaTi2(PO4)3(NTP@C)全电池在不同电流密度下的充放电曲线[27]; (c) Ni(OH)2//NaTi2(PO4)3(NTP@C)全电池在不同温度下的循环性能[27]; (d) PC//1 m TPABr+9.1 m LiBr//NDPI全电池机理图[26]; (e) PC电极在室温下的充放电曲线[26]; (f) PC电极在低温下的倍率性能[26]; (g) PC//1 m TPABr+9.1 m LiBr//NDPI全电池在不同温度下的充放电曲线[26]; (h) PC//1 m TPABr+9.1 m LiBr//NDPI全电池的循环性能[26]

    Fig. 5.  (a) The schematic illustration of Ni(OH)2//2 m NaClO4//NaTi2(PO4)3(NTP@C) full cell[27]; (b) the GCD curves of Ni(OH)2//NaTi2(PO4)3(NTP@C) full cells at different current densities[27]; (c) the cycle performances of Ni(OH)2//NaTi2(PO4)3(NTP@C) full cells at different temperatures[27]; (d) the schematic illustration of PC//1 m TPABr+9.1 m LiBr//NDPI full cell[26]; (e) the GCD curves of PC electrodes at room temperature[26]; (f) the rate performances of PC electrodes from –60 to –20 ℃[26]; (g) the GCD curves of PC//1 m TPABr+9.1 m LiBr//NDPI full cells at different temperatures[26]; (h) the cycle performances of PC//1 m TPABr+9.1 m LiBr//NDPI full cells[26].

    图 6  (a) LiCoO2电极在不同电解液和不同温度下的循环性能[38]; (b)—(d) 有机电解液和水系电解液的阻抗对比[38]

    Fig. 6.  (a) The cycle performances of LiCoO2 electrodes in different states[38]; (b)–(d) the impedances comparison between aqueous (sat. LiCl) and organic (1 M LiPF6 in 1:1 EC: DEC) electrolyte systems[38].

    图 7  (a) LiMn2O4(LMO)//Li4Ti5O12(LTO)全电池在BSiS-D0.28和BSiS-A0.5电解液中的电化学性能[39]; (b)—(d) RE, RSEIRCT的阻抗拟合结果[39]

    Fig. 7.  (a) The cycle performances of LiMn2O4(LMO)//Li4Ti5O12(LTO) full cells tested in different electrolytes[39]; (b)–(d) fitting results of RE, RSEI, and RCT obtained from EIS[39].

    图 8  (a) Na3V2(PO4)3 //10 m NaClO4–0.17 m Zn(CH3COO)2–2 wt% VC//Zn全电池的机理示意图[28]; (b) 两种电解液的Na3V2(PO4)3//Zn全电池在–10 ℃下循环前后的阻抗结果[28]; (c) Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2–2 wt% VC//Zn全电池低温下的倍率性能[28]; (d) Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2-2 wt% VC//Zn全电池在–10 ℃的循环性能[28]

    Fig. 8.  (a) The schematic illustration of Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2-2 wt% VC//Zn full cell[28]; (b) the EIS results of Na3V2(PO4)3//Zn full batteries before and after 30 cycles at –10 ℃ in the two electrolytes[28]; (c) the rate performances of Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2-2 wt% VC//Zn full cells at low temperatures[28]; (d) the cycle performances of Na3V2(PO4)3 //10 m NaClO4-0.17 m Zn(CH3COO)2-2 wt% VC//Zn full cells at –10 ℃[28].

  • [1]

    Dunn B, Kamath H, Tarascon J M 2011 Science 334 928Google Scholar

    [2]

    Larcher D, Tarascon J M 2015 Nat. Chem. 7 19Google Scholar

    [3]

    Goodenough J B 2013 Acc. Chem. Res. 46 1053Google Scholar

    [4]

    Abada S, Marlair G, Lecocq A, Petit M, Sauvant-Moynot V, Huet F 2016 J. Power Sources 306 178Google Scholar

    [5]

    Kim H, Hong J, Park K Y, Kim H, Kim S W, Kang K 2014 Chem. Rev. 114 11788Google Scholar

    [6]

    Tang W, Zhu Y, Hou Y, Liu L, Wu Y, Loh K P, Zhang H, Zhu K 2013 Energy Environ. Sci. 6 2093Google Scholar

    [7]

    Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu K 2015 Science 350 938Google Scholar

    [8]

    Yue J, Suo L 2021 Energy Fuels 35 9228Google Scholar

    [9]

    Zhang S, Xu K, Jow T 2003 J. Power Sources 115 137Google Scholar

    [10]

    Gao H N, Zhao Z G, Cai Y D, Zhou J J, Hua W D, Chen L, Wang L, Zhang J Q, Han D, Liu M J, Jiang L 2017 Nat. Commun. 8 15911Google Scholar

    [11]

    Jiang L, Lu Y, Zhao C, Liu L, Zhang J, Zhang Q, Shen X, Zhao J, Yu X, Li H, Huang X, Chen L, Hu Y S 2019 Nat. Energy 4 495Google Scholar

    [12]

    Wang H, Zhang H, Cheng Y, Feng K, Li X, Zhang H 2018 Electrochim. Acta 278 279Google Scholar

    [13]

    Zhang Y, Xu J, Li Z, Wang Y, Wang S, Dong X, Wang Y 2022 Sci. Bull. 67 161Google Scholar

    [14]

    Zhu K J, Sun Z Q, Jin T, Chen X C, Si Y C, Li H X, Jiao L F 2022 Batteries Supercaps 5 202200308

    [15]

    Nian Q, Wang J, Liu S, Sun T, Zheng S, Zhang Y, Tao Z, Chen J 2019 Angew. Chem. Int. Ed. 58 16994Google Scholar

    [16]

    Ma Z, Chen J, Vatamanu J, Borodin O, Bedrov D, Zhou X, Zhang W, Li W, Xu K, Xing L 2022 Energy Storage Materials 45 903

    [17]

    Liu T, Liu K-T, Wang J, Ji X, Lan P, Mu Z, Pan Y, Cheng S, Liu M 2021 Energy Storage Materials 41 133

    [18]

    Hu Y, Shi R W, Ren Y Y, Peng W S, Feng C D, Zhao Y, Zheng S J, Li W Z, Sun Z, Guo J N, Guo S Y, Wang X L, Yan F 2022 Adv. Funct. Mater. 32 2203081Google Scholar

    [19]

    Tron A, Jeong S, Park Y D, Mun J 2019 ACS Sustainable Chem. Eng. 7 14531Google Scholar

    [20]

    Liang G, Gan Z, Wang X, Jin X, Xiong B, Zhang X, Chen S, Wang Y, He H, Zhi C 2021 ACS Nano 15 17717Google Scholar

    [21]

    Zhu K, Sun Z, Li Z, Liu P, Chen X, Jiao L 2022 Energy Storage Mater. 53 523Google Scholar

    [22]

    Sun T, Liu C, Wang J, Nian Q, Feng Y, Zhang Y, Tao Z, Chen J 2020 Nano Res. 13 676Google Scholar

    [23]

    Sun Y, Zhang Y, Xu Z, Gou W, Han X, Liu M, Li CM 2022 ChemSusChem 202201362

    [24]

    Zhu M, Wang X, Tang H, Wang J, Hao Q, Liu L, Li Y, Zhang K, Schmidt O G 2020 Adv. Funct. Mater. 30 1907218Google Scholar

    [25]

    Yan C, Wang Y, Deng X, Xu Y 2022 Nano-Micro Lett. 14 98Google Scholar

    [26]

    Wang M, Li T, Yin Y, Yan J, Zhang H, Li X 2022 Adv. Energy Mater. 12 2200728Google Scholar

    [27]

    Nian Q, Liu S, Liu J, Zhang Q, Shi J, Liu C, Wang R, Tao Z, Chen J 2019 ACS Appl. Energy Mater. 2 4370Google Scholar

    [28]

    Liu S, Lei T, Song Q, Zhu J, Zhu C 2022 ACS Appl. Mater. Interfaces 14 11425Google Scholar

    [29]

    Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta AM, Pietrucci F 2017 Phys. Rev. Lett. 119 245701Google Scholar

    [30]

    Leadbetter A, Ward R, Clark J, Tucker P, Matsuo T, Suga H 1985 J. Chem. Phys. 82 424Google Scholar

    [31]

    Reber D, Kühnel R S, Battaglia C 2019 ACS Mater. Lett. 1 44Google Scholar

    [32]

    Becker M, Kühnel R S, Battaglia C 2019 ChemComm 55 12032Google Scholar

    [33]

    Liu J, Yang C, Chi X, Wen B, Wang W, Liu Y 2022 Adv. Funct. Mater. 32 2106811Google Scholar

    [34]

    Reber D, Borodin O, Becker M, Rentsch D, Thienenkamp J H, Grissa R, Zhao W, Aribia A, Brunklaus G, Battaglia C 2022 Adv. Funct. Mater. 32 2112138Google Scholar

    [35]

    Bi H, Wang X, Liu H, He Y, Wang W, Deng W, Ma X, Wang Y, Rao W, Chai Y, Ma H, Li R, Chen J, Wang Y, Xue M 2020 Adv. Mater. 32 2000074Google Scholar

    [36]

    Zhu K, Li Z, Sun Z, Liu P, Jin T, Chen X, Li H, Lu W, Jiao L 2022 Small 18 2107662Google Scholar

    [37]

    Ao H, Zhao Y, Zhou J, Cai W, Zhang X, Zhu Y, Qian Y 2019 J. Mater. Chem. A 7 18708Google Scholar

    [38]

    Ramanujapuram A, Yushin G 2018 Adv. Energy Mater. 8 1802624Google Scholar

    [39]

    Chen J, Vatamanu J, Xing L, Borodin O, Chen H, Guan X, Liu X, Xu K, Li W 2020 Adv. Energy Mater. 10 1902654Google Scholar

    [40]

    Liu T, Zhang M, Wang Y L, Wang Q Y, Lü C, Liu K X, Suresh S, Yin Y H, Hu Y Y, Li Y S, Liu X B, Zhong X W, Xia B Y, Wu Z P 2018 Adv. Energy Mater. 8 1802349Google Scholar

    [41]

    Lee J, Lee C L, Park K, Kim I D 2014 J. Power Sources 248 1211Google Scholar

    [42]

    Madzvamuse A, Hamenu L, Mohammed L, Ko JM 2018 ChemistrySelect 3 10805Google Scholar

  • [1] 刘乔, 黄家宸, 王昊, 邓亚骏. 前进接触线薄液膜结构与运移机制. 物理学报, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [3] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [4] 陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹. 钙钛矿太阳电池中的缓冲层研究进展. 物理学报, 2020, 69(13): 138401. doi: 10.7498/aps.69.20200543
    [5] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件. 物理学报, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [6] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [7] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [8] 刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱. (Ce0.8Sm0.2O2-/Y2O3:ZrO2)N超晶格电解质薄膜的制备及表征. 物理学报, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [9] 刘伯飞, 白立沙, 张德坤, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅界面缓冲层对非晶硅锗电池性能的影响. 物理学报, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [10] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [11] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [12] 张宪刚, 宗亚平, 王明涛, 吴艳. 晶粒生长演变相场法模拟界面表达的物理模型. 物理学报, 2011, 60(6): 068201. doi: 10.7498/aps.60.068201
    [13] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究. 物理学报, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [14] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响. 物理学报, 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [15] 刘贵立, 杨忠华, 方戈亮. 镁/镀镍碳纳米管界面特性电子理论研究. 物理学报, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [16] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响. 物理学报, 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [17] 杨杭生, 谢英俊. 立方氮化硼薄膜生长过程中的界面控制. 物理学报, 2007, 56(9): 5400-5407. doi: 10.7498/aps.56.5400
    [18] 刘贵立, 郭玉福, 李荣德. ZA27/CNT界面特性电子理论研究. 物理学报, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [19] 唐远河, 解光勇, 刘汉臣, 邵建斌, 马 琦, 刘会平, 宁 辉, 杨 彧, 严成海. 基于粒子成像测速技术的水中气泡界面的光学性质研究. 物理学报, 2006, 55(5): 2257-2262. doi: 10.7498/aps.55.2257
    [20] 牟维兵, 陈盘训. 用蒙特卡罗法计算X射线在重金属界面的剂量增强系数. 物理学报, 2001, 50(2): 189-192. doi: 10.7498/aps.50.189
计量
  • 文章访问数:  5588
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-01-10
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回