搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿太阳电池中的缓冲层研究进展

陈永亮 唐亚文 陈沛润 张力 刘琪 赵颖 黄茜 张晓丹

引用本文:
Citation:

钙钛矿太阳电池中的缓冲层研究进展

陈永亮, 唐亚文, 陈沛润, 张力, 刘琪, 赵颖, 黄茜, 张晓丹

Progress in perovskite solar cells based on different buffer layer materials

Chen Yong-Liang, Tang Ya-Wen, Chen Pei-Run, Zhang Li, Liu Qi, Zhao Ying, Huang Qian, Zhang Xiao-Dan
PDF
HTML
导出引用
  • 基于钙钛矿材料优异的光电特性, 钙钛矿太阳电池的转换效率迅速提高. 但制约钙钛矿太阳电池性能的因素依然存在, 例如: 界面问题、稳定性问题等. 通过在载流子传输层/电极及载流子传输层/光吸收层之间引入能带结构合适的缓冲层, 可有效改善界面间的能带失配、载流子复合及化学反应等问题, 进而提高钙钛矿电池中的电荷分离及收集效率, 实现界面及稳定性问题的有效改善. 本文总结了当前钙钛矿太阳电池中引入的缓冲层材料,全面分析了不同缓冲层材料钝化空穴传输层/阳极、电子传输层/阴极、空穴传输层/吸收层及电子传输层/吸收层间界面的机理, 对比了不同缓冲层材料对电池性能的影响, 总结了缓冲层材料在钙钛矿电池中的作用, 最后指出了钙钛矿电池中各界面缓冲层材料的研究趋势及发展方向.
    Based on the excellent optoelectronic properties of organic-inorganic hybrids perovskite materials, the power conversion efficiency of perovskite solar cells (PSCs) is rapidly increasing. However, factors that restrict the performance of PSCs still exist, such as interface and stability problems. Problems, such as band mismatching, carrier recombination and chemical reaction between interfaces, could be alleviated by introducing a buffer layer (BL) with a proper band structure between different layers. Moreover, stability as well as charge separation and collection could also be efficiently improved in PSCs. In this paper, an overview of the most contemporary strategies of BLs was provided. The passivation mechanism of BLs at different interfaces are highlighted and discussed in detail. Furthermore, the performances of recently developed BLs in PSCs are compared. Finally, we elaborate on the remaining challenges and future directions for the development of BLs to achieve high-efficiency and high-stability PSCs.
      通信作者: 黄茜, carolinehq@nankai.edu.cn
    • 基金项目: 省部级-天津市自然科学基金(15JCYBJC21200)
      Corresponding author: Huang Qian, carolinehq@nankai.edu.cn
    [1]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [2]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [3]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [4]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234Google Scholar

    [5]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [6]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [7]

    Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155Google Scholar

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [9]

    Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png

    [10]

    Qiu J H, Yang S H 2019 Chem. Rec. 20 209

    [11]

    Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854Google Scholar

    [12]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [13]

    Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646Google Scholar

    [14]

    C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100Google Scholar

    [15]

    Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61Google Scholar

    [16]

    Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937Google Scholar

    [17]

    Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153Google Scholar

    [18]

    Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36Google Scholar

    [19]

    Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280Google Scholar

    [20]

    Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19Google Scholar

    [21]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81Google Scholar

    [22]

    Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302Google Scholar

    [23]

    Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428Google Scholar

    [24]

    Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar

    [25]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar

    [26]

    L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82Google Scholar

    [27]

    Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711Google Scholar

    [28]

    Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176Google Scholar

    [29]

    Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306Google Scholar

    [30]

    Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700Google Scholar

    [31]

    Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395Google Scholar

    [32]

    Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31Google Scholar

    [33]

    Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882Google Scholar

    [34]

    Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439Google Scholar

    [35]

    Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587Google Scholar

    [36]

    Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar

    [37]

    Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507Google Scholar

    [38]

    Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar

    [39]

    Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532Google Scholar

    [40]

    Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar

    [41]

    Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280

    [42]

    Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674Google Scholar

    [43]

    Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar

    [44]

    Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683Google Scholar

    [45]

    Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903Google Scholar

  • 图 1  钙钛矿太阳电池的结构图和能级图 (a) 结构图; (b) 能级图

    Fig. 1.  Structure and energy band diagram of perovskite solar cell: (a) Structure; (b) Energy band diagram.

    图 2  空穴传输层与阳极之间的缓冲层能级图

    Fig. 2.  Energy level diagram of the buffer layer between the hole transport layer and the anode.

    图 3  有无浓度25 mg·ml–1NiO缓冲层的50个单独钙钛矿太阳电池的效率分布图[14]

    Fig. 3.  PCE distribution of 50 individual PSCs with and without 25 mg·ml–1 NiO buffer layer[14].

    图 4  电子传输层与阴极之间的缓冲层能级图

    Fig. 4.  Energy level diagram of the buffer layer between the electron transport layer and the cathode.

    图 5  不同TPBi缓冲层厚度钙钛矿太阳电池I-V图及不同结构电池的EQE图[26] (a) I-V图; (b) EQE曲线

    Fig. 5.  I-V diagram of perovskite solar cell with different TPBi buffer layer thickness and different structure cell EQE diagram[26]: (a) I-V diagram; (b) EQE diagram.

    图 6  Perovskite/PCBM和Perovskite/PCBM/Zr(Ac)4薄膜的AFM图及其表面I、N、Pb元素含量的XPS图谱; 有无Zr(Ac)4缓冲层钙钛矿太阳电池的最优电池J-V[30] (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS图谱; (d) J-V

    Fig. 6.  AFM diagram of Perovskite/PCBM and Perovskite/PCBM/Zr(Ac)4 films and XPS spectra showing the different amount of I, N and Pb elements on the films surface; the J-V characteristics of the optimized device perovskite solar cell with and without Zr(Ac)4 buffer layer[30]: (a) Perovskite/PCBM; (b) Perovskite/PCBM/Zr(Ac)4; (c) XPS spectra; (d) J-V diagram.

    图 7  ITO/SnO2/perovskite与ITO/PEI/SnO2/perovskite的AFM图、PL图及有无PEI缓冲层最优电池的入射光子-电流转换效率图(IPCE)[20] (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL图; (d) IPCE图

    Fig. 7.  The AFM images and the steady state PL spectra of ITO/PEI/SnO2/perovskite and ITO/SnO2/perovskite, and the IPCE spectra of the champion devices with and without PEI buffer layer[20]: (a) ITO/SnO2/perovskite; (b) ITO/PEI/SnO2/perovskite; (c) PL spectra; (d) IPCE spectra.

    图 8  空穴传输层与吸收层之间的缓冲层能级图

    Fig. 8.  Energy level diagram of the buffer layer between the hole transport layer and the absorption layer.

    图 9  优化的GO作缓冲层的钙钛矿太阳电池J-V及重要参数图[33]

    Fig. 9.  The J-V characteristics of the optimized device and important parameter table of perovskite solar cell with GO buffer layer[33].

    图 10  1: Glass/Perovskite; 2: Glass/CuPc/Perovskite; 3: Glass/CuPc/Al2O3/Perovskite; 4: Glass/CuPc/GO/Perovskite结构的PL图[18]

    Fig. 10.  The luminescence spectra of structure of 1: Glass/Perovskite, 2: Glass/CuPc/Perovskite, 3: Glass/CuPc/Al2O3/Perovskite and 4: Glass/CuPc/GO/Perovskite[18]

    图 11  电子传输层与吸收层之间的缓冲层能级图

    Fig. 11.  Energy level diagram of the buffer layer between the electron transport layer and the absorption layer.

    图 12  在85 ℃下, 对两种不同厚度的PCBM缓冲层加热168小时后, 获得的基于CH3NH3PbI3吸收层钙钛矿太阳电池归一化的Voc, Jsc, FF和PCE[41]

    Fig. 12.  After heating 168 hours of two different thicknesses of PCBM buffer at 85 ℃, obtained a normalized Voc, Jsc, FF and PCE based on CH3NH3PbI3 absorber layer perovskite solar cells[41].

    图 13  ITO/ZnO/TiO2(x cycle)/钙钛矿结构的XRD图(a)和PL图(b)[17]

    Fig. 13.  XRD patterns (a) and PL spectra (b) of perovskite films on Glass/ITO/ZnO/TiO2 (x cycles) substrates with various x values[17].

    图 14  PET/SnO2/Perovskite和PET/SnO2/C60-SAM/Perovskite结构的PL图谱(a)和 TRPL图谱(b)[45]

    Fig. 14.  Steady-state photoluminescence spectra and photoluminescence decay of perovskite films with and without C60-SAM[45]: (a) PL spectra; (b) TRPL spectra.

  • [1]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [2]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photonics 8 506Google Scholar

    [3]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [4]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, SeoK S I 2015 Science 348 1234Google Scholar

    [5]

    Ponseca C S, Savenije T J, Abdellah M, Zheng K B, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundstrom V 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [6]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [7]

    Brenes R, Guo D Y, Osherov A, Noel N K, Eames C, Hutter E M, Pathak S K, Niroui F, Friend R H, Islam M S, Snaith H J, Bulovic V, Savenije T J, Stranks S D 2017 Joule 1 155Google Scholar

    [8]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [9]

    Best research-cell efficiencies http://www.nrel.gov/pv/assets/ images/efficiencychart.png

    [10]

    Qiu J H, Yang S H 2019 Chem. Rec. 20 209

    [11]

    Wang B, Iocozzia J, Zhang M, Ye M D, Yan S C, Jin H L, Wang S, Zou Z G, Lin Z Q 2019 Chem. Soc. Rev. 48 4854Google Scholar

    [12]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [13]

    Chen Y J, Li M H, Chen P 2018 Sci. Rep. 8 7646Google Scholar

    [14]

    C ai, C, Zhou K, Guo H Y, Pei Y, Hu Z Y, Zhang J, Zhu Y J 2019 Electrochim. Acta 312 100Google Scholar

    [15]

    Xiao D, Li X, Wang D M, Li Q, Shen K, Wang D L 2017 Sol. Energ. Mat. Sol. C. 169 61Google Scholar

    [16]

    Bush K A, Bailie C D, Chen Y, Bowring A R, Wang W, Ma W, Leijtens T, Moghadam F, McGehee M D 2016 Adv. Mater. 28 3937Google Scholar

    [17]

    Jin T Y, Li W, Li Y Q, Luo Y X, Shen Y, Cheng L P, Tang J X 2018 Adv. Opt. Mater. 6 1801153Google Scholar

    [18]

    Nouri E, Wang Y L, Chen Q, Xu J J, Paterakis G, Dracopoulos V, Xu Z X, Tasis D, Mohammadi M R, Lianos P 2017 Electrochim. Acta 233 36Google Scholar

    [19]

    Galatopoulos F, Papadas I T, Armatas, G S, Choulis S A 2018 Adv. Mater. Interfaces 5 1800280Google Scholar

    [20]

    Li Y Q, Qi X, Liu G H, Zhang Y Q, Zhu N, Zhang Q H, Guo X, Wang D, Hu H Z, Chen Z J 2019 Org. Electron. 65 19Google Scholar

    [21]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Gratzel M, Rech B 2016 Energ Environ. Sci. 9 81Google Scholar

    [22]

    Nejand B A, Ahmadi V, Gharibzadeh S, Shahverdi H R 2016 ChemSusChem 9 302Google Scholar

    [23]

    Chatterjee S, Pal A J 2016 J. Phys. Chem. C 120 1428Google Scholar

    [24]

    Yu W L, Li F, Wang H, Alarousu E, Chen Y, Lin B, Wang L F, Hedhili M N, Li Y Y, Wu K W, Wang X B, Mohammed O F, Wu T 2016 Nanoscale 8 6173Google Scholar

    [25]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar

    [26]

    L in, W K, Su S H, Yeh M C, Chen C Y, Yokoyama M 2017 Vacuum 140 82Google Scholar

    [27]

    Shi J J, Luo Y H, Wei H Y, Luo J H, Dong J, Lv S T, Xiao J Y, Xu Y Z, Zhu L F, Xu X, Wu H J, Li D M, Meng Q B 2014 ACS Appl. Mater. Interfaces 6 9711Google Scholar

    [28]

    Matteocci, F, Busby Y, Pireaux J J, Divitini G, Cacovich S, Ducati C, Di Carlo A, 2015 ACS Appl. Mater. Interfaces 7 26176Google Scholar

    [29]

    Domanski K, Correa-Baena J P, Mine N, Nazeeruddin M K, Abate A, Saliba M, Tress W, Hagfeldt A, Gratzel M 2016 ACS Nano 10 6306Google Scholar

    [30]

    Cacovich S, Cina L, Matteocci F, Divitini G, Midgley P A, Di Carlo A, Ducati C 2017 Nanoscale 9 4700Google Scholar

    [31]

    Zhang X W, Liang C J, Sun M J, Zhang H M, Ji C, Guo Z B, Xu Y J, Sun F L, Song Q, He Z Q 2018 Phys. Chem. Chem. Phys. 20 7395Google Scholar

    [32]

    Lee M, Ko Y, Min B K, Jun Y 2016 ChemSusChem 9 31Google Scholar

    [33]

    Wang F J, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K 2016 Nanoscale 8 11882Google Scholar

    [34]

    Ghani F, Kristen J, Riegler H 2012 J. Chem. Eng. Data 57 439Google Scholar

    [35]

    Li W Z, Dong H P, Wang L D, Li N, Guo X D, Li J W, Qiu Y 2014 J. Mater. Chem. A 2 13587Google Scholar

    [36]

    Najafi L, Taheri B, Martin-Garcia B, Bellani S, Di Girolamo D, Agresti A, Oropesa-Nunez R, Pescetelli S, Vesce L, Calabro E, Prato M, Castillo A E D, Di Carlo A, Bonaccorso F 2018 ACS Nano 12 10736Google Scholar

    [37]

    Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M 2019 Sci. Bull. 64 507Google Scholar

    [38]

    Zeng Q, Liu L, Xiao Z, Liu F Y, Hua Y, Yuan Y B, Ding L M 2019 Sci. Bull. 64 885Google Scholar

    [39]

    Jia X, Zuo C T, Tao S X, Sun K, Zhao Y X, Yang S F, Cheng M, Wang M K, Yuan Y B, Yang J L, Gao F, Xing G C, Wei Z H, Zhang L J, Yip H L, Liu M Z, Shen Q, Yin L W, Han L Y, Liu S Z, Wang L Z, Luo J S, Tan H R, Jin Z W, Ding L M 2019 Sci. Bull. 64 1532Google Scholar

    [40]

    Han Q L, Wei Y, Lin R X, Fang Z M, Xiao K, Luo X, Gu S, Zhu J, Ding L M, Tan H R 2019 Sci. Bull. 64 1399Google Scholar

    [41]

    Fedros G, Ioannis T P, Gerasimos S A, Stelion A C 2018 Advanced Materials Interfaces 5 1800280

    [42]

    Zuo L J, Gu Z W, Ye T, Fu W F, Wu G, Li H Y, Chen H Z 2015 J. Am. Chem. Soc. 137 2674Google Scholar

    [43]

    Azmi R, Lee C L, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1702934Google Scholar

    [44]

    Azmi R, Hadmojo W T, Sinaga S, Lee C L, Yoon S C, Jung I H, Jang S Y 2018 Adv. Energy Mater. 8 1701683Google Scholar

    [45]

    Liu X Y, Yang X D, Liu X S, Zhao Y N, Chen J Y, Gu Y Z 2018 Appl. Phys. Lett. 113 203903Google Scholar

  • [1] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [4] 韩晓静, 杨静, 张佳莉, 刘冬雪, 石标, 王鹏阳, 赵颖, 张晓丹. 反应等离子体沉积二氧化锡电子传输层及其在钙钛矿太阳电池中的应用. 物理学报, 2023, 72(17): 178401. doi: 10.7498/aps.72.20230693
    [5] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [6] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [7] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [8] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [9] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [10] 李燕, 贺红, 党威武, 陈雪莲, 孙璨, 郑嘉璐. 钙钛矿太阳电池中各功能层的光辐照稳定性研究进展. 物理学报, 2021, 70(9): 098402. doi: 10.7498/aps.70.20201762
    [11] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [12] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化. 物理学报, 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [13] 张先飞, 王玲玲, 朱海, 曾诚. 自由流体层与多孔介质层界面的盐指现象的统一域法模拟. 物理学报, 2020, 69(21): 214701. doi: 10.7498/aps.69.20200351
    [14] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [15] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉. 爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性. 物理学报, 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [16] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [17] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展. 物理学报, 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [18] 龚伟, 徐征, 赵谡玲, 刘晓东, 杨倩倩, 樊星. NPB阳极缓冲层对反型结构聚合物太阳能电池性能的影响. 物理学报, 2014, 63(7): 078801. doi: 10.7498/aps.63.078801
    [19] 刘伯飞, 白立沙, 张德坤, 魏长春, 孙建, 侯国付, 赵颖, 张晓丹. 非晶硅界面缓冲层对非晶硅锗电池性能的影响. 物理学报, 2013, 62(24): 248801. doi: 10.7498/aps.62.248801
    [20] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能. 物理学报, 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
计量
  • 文章访问数:  19414
  • PDF下载量:  910
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-13
  • 修回日期:  2020-04-27
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回