搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

发光铅卤钙钛矿纳米晶稳定性的研究进展

樊钦华 祖延清 李璐 代锦飞 吴朝新

引用本文:
Citation:

发光铅卤钙钛矿纳米晶稳定性的研究进展

樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新

Research progress of stability of luminous lead halide perovskite nanocrystals

Fan Qin-Hua, Zu Yan-Qing, Li Lu, Dai Jin-Fei, Wu Zhao-Xin
PDF
HTML
导出引用
  • 相比传统的II-VI或III-V族半导体纳米晶(NCs), 铅卤钙钛矿NCs具有窄发射线宽、高光致发光量子产率、可调光谱和易制备等优异特性, 因此被当作是一种更理想的发光材料. 然而, 当钙钛矿NCs在遇到光、热和极性溶剂等条件时, 将会发生快速且不可逆的降解, 从而表现出差的稳定性. 因此, 提高钙钛矿NCs的稳定性是目前该研究方向亟待解决的关键问题. 本文详细总结了近年来关于提高钙钛矿NCs稳定性的常见方法, 并展望了未来的研究方向.
    The lead halide perovskite nanocrystals (NCs) have become more ideal luminescent materials due to the excellent properties such as narrow emission linewidth, photoluminescence quantum yield (PLQY), adjustable spectrum and facile preparation in comparison with traditional II-VI or III-V group semiconductor NCs. Until now, the external quantum efficiency (EQE) of light-emitting diode (LED) devices using perovskite NCs as emitting layers, has reached > 20%. This optical performance is close to that of the commercially available organic LED, which shows their great potential applications in solid state lighting and panel displaying. However, when perovskite NCs suffer light, heat and polar solvent, they exhibit the poor stability owing to the intrinsic ion properties of perovskite, and highly dynamic interface between NCs and ligands as well as the abundant defects on the surface of NCs. Therefore, how to elevate their stability is a key and urgent problem. In this review, three methods to improve the stability of NCs are summarized: 1) In situ surface passivation with tight-binding or protonation-free sole ligands such as oleic acid (OA), oleamine (OAM), dodecyl benzene sulfonic acid, octylphosphonic acid, sulfobetaines, lecithin and two ligands such as 2-hexyldecanoic acid/OAM, bis-(2,2,4-trimethylpentyl)phosphinic acid/OAM as well as three ligands such as OA/OAM/Al(NO3)3·9H2O, OA/OAM/tris(diethylamino)phosphine); the postsynthetic ligand exchange or passivation with 1-tetradecyl-3-methylimidazolium bromide, 2-aminoethanethiol, silver-trioctylphosphine complex and n-dodecylammonium thiocyanate; 2) the doping of Cs+ by FA+, Na+ and the doping of Pb2+ by Zn2+, Mn2+, Cd2+, Sr2+, Sb3+ in perovskite NCs; 3) the surface coating with inorganic oxides (SiO2, ZrO2, Al2O3, NiOx), inorganic salts (NaNO3, NH4Br, PbSO4, NaBr, RbBr, PbBr(OH)), porous materials (mesoporous silica, zeolite-Y, lead-based metal-organic frameworks), polymer materials (polystyrene, poly(styrene-ethylene-butylene-styrene, poly(laurylmethacrylate), poly(maleic anhydride-alt-1-octadecene), polyimide, poly(n-butyl methacrylate-co-2-(methacryloyloxy)ethyl-sulfobetaine)). Besides, we make some suggestions to further improve the stability of NCs as follows: 1) Developing the surface ligands with good dispersity and multi-coordination groups; 2) theoretically studying the influence of ion doping on the structure and stability; 3) realizing the stable and conductive metal oxides shell for uniform and compact encapsulation of NCs core. In a word, these conventional methods can enhance the stability of NCs to a certain extent, which fail to meet the requirements for practical application, so more efforts will be needed in the future.
      通信作者: 吴朝新, zhaoxinwu@mail.xjtu.edu.cn
    • 基金项目: 国家级-国家重点研发计划(批准号: 2016YFA0200503) 资助的课题(2016YFB0400702)
      Corresponding author: Wu Zhao-Xin, zhaoxinwu@mail.xjtu.edu.cn
    [1]

    Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [2]

    Quan L, Rand B, Friend R, Mhaisalkar S, Lee T, Sargent E 2019 Chem. Rev. 119 7444Google Scholar

    [3]

    Levchuk I, Osvet A, Tang X, Brandl M, Perea J, Hoegl F, Matt G, Hock R, Batentschuk M, Brabec C 2017 Nano Lett. 17 2765Google Scholar

    [4]

    Lee T 2019 Adv. Mater. 31 1905077Google Scholar

    [5]

    Smock S, Williams T, Brutchey R 2018 Angew. Chem. Int. Ed. 57 11711Google Scholar

    [6]

    Møller C 1958 Nature 182 1436

    [7]

    Weber D 1978 Zeitschrift fur Naturforschung B 33 862Google Scholar

    [8]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [9]

    Pu C, Dai X, Shu Y, Zhu M, Deng Y, Jin Y, Peng X 2020 Nat. Commun. 11 937Google Scholar

    [10]

    Reiss P, Carriere M, Lincheneau C, Vaure L, Tamang S 2016 Chem. Rev. 116 10731Google Scholar

    [11]

    Kumar S, Jagielski J, Kallikounis N, Kim Y, Wolf C, Jenny F, Tian T, Hofer C, Chiu Y, Stark W, Lee T, Shih C 2017 Nano Lett. 17 5277Google Scholar

    [12]

    He J, Chen H, Chen H, Wang Y, Wu S, Dong Y 2017 Opt. Express 25 12915Google Scholar

    [13]

    Won Y, Cho O, Kim T, Chung D, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E 2019 Science 575 634

    [14]

    Yu D, Cao F, Gao Y, Xiong Y, Zeng H 2018 Adv. Funct. Mater. 28 1800248Google Scholar

    [15]

    Akkerman Q, Raino G, Kovalenko M, Manna L 2018 Nat. Mater. 17 394Google Scholar

    [16]

    Zu Y, Dai J, Li L, Yuan F, Chen X, Feng Z, Li K, Song X, Yun F, Yu Y, Jiao B, Dong H, Hou X, Ju M, Wu Z 2019 J. Mater. Chem. A 7 26116Google Scholar

    [17]

    Lv W, Li L, Xu M, Hong J, Tang X, Xu L, Wu Y, Zhu R, Chen R, Huang W 2019 Adv. Mater. 31 1900682Google Scholar

    [18]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [19]

    韦祎, 陈叶青, 程子泳, 林君 2018 中国科学: 化学 48 771Google Scholar

    Wei Y, Chen Y Q, Cheng Z R, Lin J 2018 Sci. Sin. Chim. 48 771Google Scholar

    [20]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [21]

    谢启飞, 王新中, 李玥, 马艳红 2018 深圳信息职业技术学院学报 16 56Google Scholar

    Xie Q F, Wang X Z, Li Y, Ma Y H 2018 Journal of Shenzhen Institute of information tecnology 16 56Google Scholar

    [22]

    王恩胜, 余丽萍, 廉世勋, 周文理 2019 材料导报 33 777Google Scholar

    Wang E S, Yu L P, Lian S X, Zhou W L 2019 Materials Reports 33 777Google Scholar

    [23]

    徐妍, 曹蒙蒙, 夏超, 李会利 2019 聊城大学学报 32 69

    Xu Y, Cao M M, Xia C, Li H L 2019 Journal of Liaocheng University 32 69

    [24]

    Krieg F, Ochsenbein S, Yakunin, S, Brinck S, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C, Infante I, Kovalenko M 2018 ACS Energy Lett. 33 641

    [25]

    Liu F, Zhang Y, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [26]

    Seth S, Ahmed T, De A, Samanta A 2019 ACS Energy Lett. 4 1610Google Scholar

    [27]

    Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X 2019 Small 15 1901173

    [28]

    Wang C, Chesman A, Jasieniak J 2017 Chem. Commun. 53 232Google Scholar

    [29]

    Xu K, Allen A, Luo B, Vickers E, Wang Q, Hollingsworth W, Ayzner A, Li X, Zhang J 2019 J. Phys. Chem. Lett. 10 4409Google Scholar

    [30]

    Wang S, Yu J, Zhang M, Chen D, Li C, Chen R, Jia G, Rogach A, Yang X 2019 Nano Lett. 19 6315Google Scholar

    [31]

    Yassitepe E, Yang Z, Voznyy O, Kim Y, Walters G, Castañeda J, Kanjanaboos P, Yuan M, Gong X, Fan F, Pan J, Hoogland S, Comin R, Bakr O, Padilha L, Nogueira A, Sargent E 2016 Adv. Funct. Mater. 26 8757Google Scholar

    [32]

    Tan Y, Zou Y, Wu L, Huang Q, Yang D, Chen M, Ban M, Wu C, Wu T, Bai S, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 3784Google Scholar

    [33]

    Imran M, Ijaz P, Goldoni L, Maggioni D, Petralanda U, Prato M, Almeida G, Infante I, Manna L 2019 ACS Energy Lett. 4 819Google Scholar

    [34]

    Yang D, Li X, Zhou W, Zhang S, Meng C, Wu Y, Wang Y, Zeng H 2019 Adv. Mater. 1900767Google Scholar

    [35]

    Zhong Q, Cao M, Xu Y, Li P, Zhang Y, Hu H, Yang D, Xu L, Wang L, Li Y, Zhang X, Zhang Q 2019 Nano Lett. 19 4151Google Scholar

    [36]

    Krieg F, Ong Q, Burian M, Rainò G, Naumenko D, Amenitsch H, Süess A, Grotevent M, Krumeich F, Bodnarchuk M, Shorubalko I, Stellacci F, Kovalenko M 2019 J. Am. Chem. Soc. 141 19839Google Scholar

    [37]

    Zu Y, Xi J, Li L, Dai J, Wang S, Yun F, Jiao B, Dong H, Hou X, Wu Z 2020 ACS Appl. Mater. Interfaces 12 2835Google Scholar

    [38]

    Koscher B, Swabeck J, Bronstein N, Alivisatos A 2017 J. Am. Chem. Soc. 139 6566Google Scholar

    [39]

    Ahmed T, Seth S, Samanta A 2018 Chem. Mater. 30 3633Google Scholar

    [40]

    Zhao Y, Yang R, Wan W, Jing X, Wen T, Ye S 2020 Chem. Eng. J.Google Scholar

    [41]

    Bi C, Kershaw S, Rogach A, Tian J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [42]

    Li H, Qian Y, Xing X, Zhu J, Huang X, Jing Q, Zhang W, Zhang C, Lu Z 2018 J. Phys. Chem. C 122 12994Google Scholar

    [43]

    Zheng X, Yuan S, Liu J, Yin J, Yuan F, Shen W, Yao K, Wei M, Zhou C, Song K, Zhang B, Lin Y, Hedhili M, Wehbe N, Han Y, Sun H, Lu Z, Anthopoulos T, Mohammed O, Sargent E, Liao L, Bakr O 2020 ACS Energy Lett. 5 793Google Scholar

    [44]

    Zhou Y, Chen J, Bakr O, Sun H 2018 Chem. Mater. 30 6589Google Scholar

    [45]

    Xu L, Yuan S, Zeng H, Song J 2019 Materials Today Nano 6 100036Google Scholar

    [46]

    Protesescu L, Yakunin S, Kumar S, Bar J, Bertolotti F, Masciocchi N, Guagliardi A, Grotevent M, Shorubalko I, Bodnarchuk M, Shih C, Kovalenko M 2017 ACS Nano 11 3119Google Scholar

    [47]

    Li S, Shi Z, Zhang F, Wang L, Ma Z, Yang D, Yao Z, Wu D, Xu T, Tian Y, Zhang Y, Shan C, Li X 2019 Chem. Mater. 31 3917Google Scholar

    [48]

    Shen X, Zhang Y, Kershaw S, Li T, Wang C, Zhang X, Wang W, Li D, Wang Y, Lu M, Zhang L, Sun C, Zhao D, Qin G, Bai X, Yu W, Rogach A 2019 Nano Lett. 19 1552Google Scholar

    [49]

    Mir W, Swarnkar A, Nag A 2019 Nanoscale 11 4278Google Scholar

    [50]

    Mondal N, De A, Samanta A 2019 ACS Energy Lett. 4 32Google Scholar

    [51]

    Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S, Yao H 2019 J. Am. Chem. Soc. 141 2069Google Scholar

    [52]

    Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V, Wang S, Zhang Y, Yu W 2019 J. Phys. Chem. Lett. 10 1750Google Scholar

    [53]

    Moon H, Lee C, Lee W, Kim J, Chae H 2019 Adv. Mater. 31 1804294Google Scholar

    [54]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 405Google Scholar

    [55]

    Liu H, Tan Y, Cao M, Hu H, Wu L, Yu X, Wang L, Sun B, Zhang Q 2019 ACS Nano 13 5366Google Scholar

    [56]

    Zhang Q, Wang B, Zheng W, Kong L, Wan Q, Zhang C, Li Z, Cao X, Liu M, Li L 2020 Nat. Commun. 11 31Google Scholar

    [57]

    Zhou W, Zhao Y, Wang E, Li Q, Lou S, Wang J, Li X, Lian Q, Xie Q, Zhang R, Zeng H 2020 J. Phys. Chem. Lett. 11 3159Google Scholar

    [58]

    Zheng W, Wan Q, Zhang Q, Liu M, Zhang C, Wang B, Kong L, Li L 2020 Nanoscale 12 8711Google Scholar

    [59]

    Wang S, Bi C, Yuan J, Zhang L, Tian J 2018 ACS Energy Lett. 3 245Google Scholar

    [60]

    Li Z, Hu Q, Tan Z, Yang Y, Leng M, Liu X, Ge C, Niu G, Tang J 2018 ACS Appl. Mater. Interfaces 10 43915Google Scholar

    [61]

    Wang B, Zhang C, Huang S, Li Z, Kong L, Jin L, Wang J, Wu K, Li L 2018 ACS Appl. Mater. Interfaces 10 23303Google Scholar

    [62]

    Lou S, Zhou Z, Xuan T, Li H, Jiao J, Zhang H, Gautier R, Wang J 2019 ACS Appl. Mater. Interfaces 11 24241Google Scholar

    [63]

    Yang G, Fan Q, Chen B, Zhou Q, Zhong H 2016 J. Mater. Chem. C 4 11387Google Scholar

    [64]

    Lou S, Xuan T, Yu C, Cao M, Xia C, Wang J, Li H 2017 J Mater. Chem. C 5 7431Google Scholar

    [65]

    Ravi V, Scheidt R, Nag A, Kuno M, Kamat P 2018 ACS Energy Lett. 3 1049Google Scholar

    [66]

    Dirin D, Benin B, Yakunin S, Krumeich F, Raino G, Frison R, Kovalenko M 2019 ACS Nano 13 11642Google Scholar

    [67]

    Liu K, Liu Q, Yang D, Liang Y, Sui L, Wei J, Xue G, Zhao W, Wu X, Dong L, Shan C 2020 Light.: Sci. Appl. 9 44Google Scholar

    [68]

    Raja S, Bekenstein Y, Koc M, Fischer S, Zhang D, Lin L, Ritchie R, Yang P, Alivisatos A 2016 ACS Appl. Mater. Interfaces 8 35523Google Scholar

    [69]

    Wu H, Wang S, Cao F, Zhou J, Wu Q, Wang H, Li X, Yin L, Yang X 2019 Chem. Mater. 31 1936Google Scholar

    [70]

    Zhang Y, Zhao Y, Wu D, Xue J, Qiu Y, Liao M, Pei Q, Goorsky M, He X 2019 Adv. Mater. 31 1902928Google Scholar

    [71]

    Zhang J, Jiang P, Wang Y, Liu X, Ma J, Tu G 2020 ACS Appl. Mater. Interfaces 12 3080Google Scholar

    [72]

    Kim H, Hight-Huf N, Kang J, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward R, Emrick T 2020 Angew. Chem. Int. Ed. 59 1Google Scholar

    [73]

    Wang H, Lin S, Tang A, Singh B, Tong H, Chen C, Lee Y, Tsai T, Liu S 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar

    [74]

    Sun J, Rabouw F, Yang X, Huang X, Jing X, Ye S, Zhang Q 2017 Adv. Funct. Mater. 27 1704371Google Scholar

    [75]

    Zhang C, Wang B, Li W, Huang S, Kong L, Li Z, Li L 2017 Nat. Commun. 8 1138Google Scholar

    [76]

    Liang X, Chen M, Wang Q, Guo S, Yang H 2019 Angew. Chem. Int. Ed. 58 2799Google Scholar

    [77]

    He Y, Yoon Y, Harn Y, Biesold-McGee G, Liang S, Lin C, Tsukruk V, Thadhani N, Kang Z, Lin Z 2019 Sci. Adv. 5 4424Google Scholar

    [78]

    You C, Li F, Lin L, Lin J, Chen Q, Radjenovic P, Tian Z, Li J 2020 Nano Energy 71 104554Google Scholar

  • 图 1  胶体铅卤钙钛矿NCs (a) APbX3钙钛矿结构, 具有三维共角八面体, 左侧为立方结构(MAPbX3, FAPbX3; 显示了两个晶胞), 右侧为正交结构(CsPbX3); (b)单个立方形CsPbX3 NCs大角度环形暗场扫描透射电子显微照片, 边缘长度为15 nm; (c)高发光胶体NCs的照片, 从左至右, CsPbBr3的发射峰为520 nm, CsPb(Cl/Br)3的发射峰为450 nm, FAPb(Br/I)3的发射峰为640 nm[15]

    Fig. 1.  Colloidal lead halide perovskite NCs: (a) The APbX3 perovskite structure with 3D-corner-sharing octahedra. (Cubic (MAPbX3, FAPbX3; two unit cells shown) on the left and orthorhombic (CsPbX3) on the right); (b) high-angle annular dark-field scanning transmission electron micrograph (HAADF-STEM) of a single, cube-shaped CsPbBr3 NCs, with 15 nm edge length; (c) photograph of highly luminescent colloidal NCs, from left to right, CsPbBr3 with emission peak at 520 nm, CsPb(Cl/Br)3 emitting at 450 nm and FAPb(Br/I)3 emitting at 640 nm)[15].

    图 2  磺酸基团的理论钝化效应 (a) CsPbBr3存在VBr 的价带最大值和导带最小值的电子DOS曲线; (b)CsPbBr3存在VBr 的电子离域结果; (c)磺酸基团钝化CsPbBr3VBr后的价带最大值和导带最小值的电子DOS曲线价带最大值和导带最小值的电子DOS曲线; (d) 磺酸基团钝化CsPbBr3VBr后的电子离域结果[34]

    Fig. 2.  Theoretical sulfonate passivation effect: (a) Electronic DOS curves of valence band maximum (VBM) and conduction band minimum (CBM) of CsPbBr3 with VBr; (b) electron localization function results of CsPbBr3 with VBr; (c) electronic DOS curves of valence band maximum (VBM) and conduction band minimum (CBM) of CsPbBr3 with VBr passivated by the sulfonate group; (d) electron localization function results of CsPbBr3 with VBr passivated by the sulfonate group[34].

    图 3  CsPbCl3 NCs中Pb2+被Cd2+取代的示意图[50]

    Fig. 3.  Representative scheme for exchange of Pb2+ by Cd2+ in CsPbCl3 NCs[50].

    图 4  CsPbBr3 NCs被嵌于SiO2的示意图[56]

    Fig. 4.  The schematic diagram of synthesis CsPbBr3 NCs into SiO2[56].

    图 5  水辅助使CsPbBr3/Cs4PbBr6复合NCs向CsPbBr3/CsPb2Br5复合NCs转化过程的示意图[62]

    Fig. 5.  Schematic illustration of the water-assisted transformation process from CsPbBr3/Cs4PbBr6 composite NCs to CsPbBr3/CsPb2Br5 composite NCs[62].

    图 6  MAPbBr3形貌变化的示意图[67]

    Fig. 6.  Schematic illustration of the morphology evolution of MAPbBr3[67].

    图 7  厚PMAO聚合物层包覆钙钛矿NCs的后合成处理示意图[69]

    Fig. 7.  Schematic illustration of postsynthetic treatment for obtaining perovskite NCs with a thick PMAO polymer coating layer[69].

    图 8  CsPbX3/介孔二氧化硅复合物的制备过程示意图[73]

    Fig. 8.  The synthesis process of CsPbX3/mesoporous silica nanocomposite[73].

    图 9  分别以星形P4 VP-b-PtBA-b-PS和P4 VP-b-PtBA-b-PEO为纳米反应器逐步合成PS包覆MAPbBr3/SiO2核/壳NCs和PEO包覆MAPbBr3/SiO2核/壳NCs的路线. CD表示环糊精; BMP表示2-溴–2-甲基丙酸盐; TOABr表示四辛基溴化铵[77]

    Fig. 9.  Stepwise representation of the synthetic route to PS-capped MAPbBr3/SiO2 core/shell NCs and PEO-capped MAPbBr3/SiO2 core/shell NCs by exploiting star-like P4 VP-b-PtBA-b-PS and P4 VP-b-PtBA-b-PEO as nanoreactors, respectively. CD, cyclodextrin; BMP, 2-bromo-2-methylpropionate; and TOABr, tetraoctylammonium bromide[77].

  • [1]

    Ni Z Y, Bao C X, Liu Y, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [2]

    Quan L, Rand B, Friend R, Mhaisalkar S, Lee T, Sargent E 2019 Chem. Rev. 119 7444Google Scholar

    [3]

    Levchuk I, Osvet A, Tang X, Brandl M, Perea J, Hoegl F, Matt G, Hock R, Batentschuk M, Brabec C 2017 Nano Lett. 17 2765Google Scholar

    [4]

    Lee T 2019 Adv. Mater. 31 1905077Google Scholar

    [5]

    Smock S, Williams T, Brutchey R 2018 Angew. Chem. Int. Ed. 57 11711Google Scholar

    [6]

    Møller C 1958 Nature 182 1436

    [7]

    Weber D 1978 Zeitschrift fur Naturforschung B 33 862Google Scholar

    [8]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [9]

    Pu C, Dai X, Shu Y, Zhu M, Deng Y, Jin Y, Peng X 2020 Nat. Commun. 11 937Google Scholar

    [10]

    Reiss P, Carriere M, Lincheneau C, Vaure L, Tamang S 2016 Chem. Rev. 116 10731Google Scholar

    [11]

    Kumar S, Jagielski J, Kallikounis N, Kim Y, Wolf C, Jenny F, Tian T, Hofer C, Chiu Y, Stark W, Lee T, Shih C 2017 Nano Lett. 17 5277Google Scholar

    [12]

    He J, Chen H, Chen H, Wang Y, Wu S, Dong Y 2017 Opt. Express 25 12915Google Scholar

    [13]

    Won Y, Cho O, Kim T, Chung D, Kim T, Chung H, Jang H, Lee J, Kim D, Jang E 2019 Science 575 634

    [14]

    Yu D, Cao F, Gao Y, Xiong Y, Zeng H 2018 Adv. Funct. Mater. 28 1800248Google Scholar

    [15]

    Akkerman Q, Raino G, Kovalenko M, Manna L 2018 Nat. Mater. 17 394Google Scholar

    [16]

    Zu Y, Dai J, Li L, Yuan F, Chen X, Feng Z, Li K, Song X, Yun F, Yu Y, Jiao B, Dong H, Hou X, Ju M, Wu Z 2019 J. Mater. Chem. A 7 26116Google Scholar

    [17]

    Lv W, Li L, Xu M, Hong J, Tang X, Xu L, Wu Y, Zhu R, Chen R, Huang W 2019 Adv. Mater. 31 1900682Google Scholar

    [18]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [19]

    韦祎, 陈叶青, 程子泳, 林君 2018 中国科学: 化学 48 771Google Scholar

    Wei Y, Chen Y Q, Cheng Z R, Lin J 2018 Sci. Sin. Chim. 48 771Google Scholar

    [20]

    Niu G, Guo X, Wang L 2015 J. Mater. Chem. A 3 8970Google Scholar

    [21]

    谢启飞, 王新中, 李玥, 马艳红 2018 深圳信息职业技术学院学报 16 56Google Scholar

    Xie Q F, Wang X Z, Li Y, Ma Y H 2018 Journal of Shenzhen Institute of information tecnology 16 56Google Scholar

    [22]

    王恩胜, 余丽萍, 廉世勋, 周文理 2019 材料导报 33 777Google Scholar

    Wang E S, Yu L P, Lian S X, Zhou W L 2019 Materials Reports 33 777Google Scholar

    [23]

    徐妍, 曹蒙蒙, 夏超, 李会利 2019 聊城大学学报 32 69

    Xu Y, Cao M M, Xia C, Li H L 2019 Journal of Liaocheng University 32 69

    [24]

    Krieg F, Ochsenbein S, Yakunin, S, Brinck S, Aellen P, Süess A, Clerc B, Guggisberg D, Nazarenko O, Shynkarenko Y, Kumar S, Shih C, Infante I, Kovalenko M 2018 ACS Energy Lett. 33 641

    [25]

    Liu F, Zhang Y, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [26]

    Seth S, Ahmed T, De A, Samanta A 2019 ACS Energy Lett. 4 1610Google Scholar

    [27]

    Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X 2019 Small 15 1901173

    [28]

    Wang C, Chesman A, Jasieniak J 2017 Chem. Commun. 53 232Google Scholar

    [29]

    Xu K, Allen A, Luo B, Vickers E, Wang Q, Hollingsworth W, Ayzner A, Li X, Zhang J 2019 J. Phys. Chem. Lett. 10 4409Google Scholar

    [30]

    Wang S, Yu J, Zhang M, Chen D, Li C, Chen R, Jia G, Rogach A, Yang X 2019 Nano Lett. 19 6315Google Scholar

    [31]

    Yassitepe E, Yang Z, Voznyy O, Kim Y, Walters G, Castañeda J, Kanjanaboos P, Yuan M, Gong X, Fan F, Pan J, Hoogland S, Comin R, Bakr O, Padilha L, Nogueira A, Sargent E 2016 Adv. Funct. Mater. 26 8757Google Scholar

    [32]

    Tan Y, Zou Y, Wu L, Huang Q, Yang D, Chen M, Ban M, Wu C, Wu T, Bai S, Song T, Zhang Q, Sun B 2018 ACS Appl. Mater. Interfaces 10 3784Google Scholar

    [33]

    Imran M, Ijaz P, Goldoni L, Maggioni D, Petralanda U, Prato M, Almeida G, Infante I, Manna L 2019 ACS Energy Lett. 4 819Google Scholar

    [34]

    Yang D, Li X, Zhou W, Zhang S, Meng C, Wu Y, Wang Y, Zeng H 2019 Adv. Mater. 1900767Google Scholar

    [35]

    Zhong Q, Cao M, Xu Y, Li P, Zhang Y, Hu H, Yang D, Xu L, Wang L, Li Y, Zhang X, Zhang Q 2019 Nano Lett. 19 4151Google Scholar

    [36]

    Krieg F, Ong Q, Burian M, Rainò G, Naumenko D, Amenitsch H, Süess A, Grotevent M, Krumeich F, Bodnarchuk M, Shorubalko I, Stellacci F, Kovalenko M 2019 J. Am. Chem. Soc. 141 19839Google Scholar

    [37]

    Zu Y, Xi J, Li L, Dai J, Wang S, Yun F, Jiao B, Dong H, Hou X, Wu Z 2020 ACS Appl. Mater. Interfaces 12 2835Google Scholar

    [38]

    Koscher B, Swabeck J, Bronstein N, Alivisatos A 2017 J. Am. Chem. Soc. 139 6566Google Scholar

    [39]

    Ahmed T, Seth S, Samanta A 2018 Chem. Mater. 30 3633Google Scholar

    [40]

    Zhao Y, Yang R, Wan W, Jing X, Wen T, Ye S 2020 Chem. Eng. J.Google Scholar

    [41]

    Bi C, Kershaw S, Rogach A, Tian J 2019 Adv. Funct. Mater. 29 1902446Google Scholar

    [42]

    Li H, Qian Y, Xing X, Zhu J, Huang X, Jing Q, Zhang W, Zhang C, Lu Z 2018 J. Phys. Chem. C 122 12994Google Scholar

    [43]

    Zheng X, Yuan S, Liu J, Yin J, Yuan F, Shen W, Yao K, Wei M, Zhou C, Song K, Zhang B, Lin Y, Hedhili M, Wehbe N, Han Y, Sun H, Lu Z, Anthopoulos T, Mohammed O, Sargent E, Liao L, Bakr O 2020 ACS Energy Lett. 5 793Google Scholar

    [44]

    Zhou Y, Chen J, Bakr O, Sun H 2018 Chem. Mater. 30 6589Google Scholar

    [45]

    Xu L, Yuan S, Zeng H, Song J 2019 Materials Today Nano 6 100036Google Scholar

    [46]

    Protesescu L, Yakunin S, Kumar S, Bar J, Bertolotti F, Masciocchi N, Guagliardi A, Grotevent M, Shorubalko I, Bodnarchuk M, Shih C, Kovalenko M 2017 ACS Nano 11 3119Google Scholar

    [47]

    Li S, Shi Z, Zhang F, Wang L, Ma Z, Yang D, Yao Z, Wu D, Xu T, Tian Y, Zhang Y, Shan C, Li X 2019 Chem. Mater. 31 3917Google Scholar

    [48]

    Shen X, Zhang Y, Kershaw S, Li T, Wang C, Zhang X, Wang W, Li D, Wang Y, Lu M, Zhang L, Sun C, Zhao D, Qin G, Bai X, Yu W, Rogach A 2019 Nano Lett. 19 1552Google Scholar

    [49]

    Mir W, Swarnkar A, Nag A 2019 Nanoscale 11 4278Google Scholar

    [50]

    Mondal N, De A, Samanta A 2019 ACS Energy Lett. 4 32Google Scholar

    [51]

    Yao J, Ge J, Wang K, Zhang G, Zhu B, Chen C, Zhang Q, Luo Y, Yu S, Yao H 2019 J. Am. Chem. Soc. 141 2069Google Scholar

    [52]

    Zhang X, Wang H, Hu Y, Pei Y, Wang S, Shi Z, Colvin V, Wang S, Zhang Y, Yu W 2019 J. Phys. Chem. Lett. 10 1750Google Scholar

    [53]

    Moon H, Lee C, Lee W, Kim J, Chae H 2019 Adv. Mater. 31 1804294Google Scholar

    [54]

    Wei Y, Cheng Z, Lin J 2019 Chem. Soc. Rev. 48 405Google Scholar

    [55]

    Liu H, Tan Y, Cao M, Hu H, Wu L, Yu X, Wang L, Sun B, Zhang Q 2019 ACS Nano 13 5366Google Scholar

    [56]

    Zhang Q, Wang B, Zheng W, Kong L, Wan Q, Zhang C, Li Z, Cao X, Liu M, Li L 2020 Nat. Commun. 11 31Google Scholar

    [57]

    Zhou W, Zhao Y, Wang E, Li Q, Lou S, Wang J, Li X, Lian Q, Xie Q, Zhang R, Zeng H 2020 J. Phys. Chem. Lett. 11 3159Google Scholar

    [58]

    Zheng W, Wan Q, Zhang Q, Liu M, Zhang C, Wang B, Kong L, Li L 2020 Nanoscale 12 8711Google Scholar

    [59]

    Wang S, Bi C, Yuan J, Zhang L, Tian J 2018 ACS Energy Lett. 3 245Google Scholar

    [60]

    Li Z, Hu Q, Tan Z, Yang Y, Leng M, Liu X, Ge C, Niu G, Tang J 2018 ACS Appl. Mater. Interfaces 10 43915Google Scholar

    [61]

    Wang B, Zhang C, Huang S, Li Z, Kong L, Jin L, Wang J, Wu K, Li L 2018 ACS Appl. Mater. Interfaces 10 23303Google Scholar

    [62]

    Lou S, Zhou Z, Xuan T, Li H, Jiao J, Zhang H, Gautier R, Wang J 2019 ACS Appl. Mater. Interfaces 11 24241Google Scholar

    [63]

    Yang G, Fan Q, Chen B, Zhou Q, Zhong H 2016 J. Mater. Chem. C 4 11387Google Scholar

    [64]

    Lou S, Xuan T, Yu C, Cao M, Xia C, Wang J, Li H 2017 J Mater. Chem. C 5 7431Google Scholar

    [65]

    Ravi V, Scheidt R, Nag A, Kuno M, Kamat P 2018 ACS Energy Lett. 3 1049Google Scholar

    [66]

    Dirin D, Benin B, Yakunin S, Krumeich F, Raino G, Frison R, Kovalenko M 2019 ACS Nano 13 11642Google Scholar

    [67]

    Liu K, Liu Q, Yang D, Liang Y, Sui L, Wei J, Xue G, Zhao W, Wu X, Dong L, Shan C 2020 Light.: Sci. Appl. 9 44Google Scholar

    [68]

    Raja S, Bekenstein Y, Koc M, Fischer S, Zhang D, Lin L, Ritchie R, Yang P, Alivisatos A 2016 ACS Appl. Mater. Interfaces 8 35523Google Scholar

    [69]

    Wu H, Wang S, Cao F, Zhou J, Wu Q, Wang H, Li X, Yin L, Yang X 2019 Chem. Mater. 31 1936Google Scholar

    [70]

    Zhang Y, Zhao Y, Wu D, Xue J, Qiu Y, Liao M, Pei Q, Goorsky M, He X 2019 Adv. Mater. 31 1902928Google Scholar

    [71]

    Zhang J, Jiang P, Wang Y, Liu X, Ma J, Tu G 2020 ACS Appl. Mater. Interfaces 12 3080Google Scholar

    [72]

    Kim H, Hight-Huf N, Kang J, Bisnoff P, Sundararajan S, Thompson T, Barnes M, Hayward R, Emrick T 2020 Angew. Chem. Int. Ed. 59 1Google Scholar

    [73]

    Wang H, Lin S, Tang A, Singh B, Tong H, Chen C, Lee Y, Tsai T, Liu S 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar

    [74]

    Sun J, Rabouw F, Yang X, Huang X, Jing X, Ye S, Zhang Q 2017 Adv. Funct. Mater. 27 1704371Google Scholar

    [75]

    Zhang C, Wang B, Li W, Huang S, Kong L, Li Z, Li L 2017 Nat. Commun. 8 1138Google Scholar

    [76]

    Liang X, Chen M, Wang Q, Guo S, Yang H 2019 Angew. Chem. Int. Ed. 58 2799Google Scholar

    [77]

    He Y, Yoon Y, Harn Y, Biesold-McGee G, Liang S, Lin C, Tsukruk V, Thadhani N, Kang Z, Lin Z 2019 Sci. Adv. 5 4424Google Scholar

    [78]

    You C, Li F, Lin L, Lin J, Chen Q, Radjenovic P, Tian Z, Li J 2020 Nano Energy 71 104554Google Scholar

  • [1] 张喜生, 晏春愉, 胡李纳, 王景州, 姚陈忠. 低温溶液加工CsPbBr3纳晶薄膜制备钙钛矿太阳电池. 物理学报, 2024, 73(22): 228101. doi: 10.7498/aps.73.20241152
    [2] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [3] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [4] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [5] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [6] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [7] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [8] 王必本, 朱恪, 王强. Se和MoSe2纳米片的结构和发光性能. 物理学报, 2016, 65(3): 038102. doi: 10.7498/aps.65.038102
    [9] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [10] 王丽师, 徐建萍, 石少波, 张晓松, 任志瑞, 葛林, 李岚. ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响. 物理学报, 2013, 62(19): 196103. doi: 10.7498/aps.62.196103
    [11] 郑立思, 冯苗, 詹红兵. 表面修饰基团对金纳米颗粒非线性光学效应的影响研究. 物理学报, 2012, 61(5): 054212. doi: 10.7498/aps.61.054212
    [12] 肖思国, 阳效良, 丁建文, 颜晓红. 尺寸效应对Er3+掺杂纳米Y2O3的发光特性的影响. 物理学报, 2009, 58(1): 165-173. doi: 10.7498/aps.58.165
    [13] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [14] 黄金华, 张 琨, 潘 楠, 高志伟, 王晓平. 表面修饰ZnO纳米线紫外光响应的增强效应. 物理学报, 2008, 57(12): 7855-7859. doi: 10.7498/aps.57.7855
    [15] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [16] 刘晃清, 王玲玲, 邹炳锁. 退火温度对ZrO2纳米材料中Eu3+离子发光的影响. 物理学报, 2007, 56(1): 556-560. doi: 10.7498/aps.56.556
    [17] 郑瑞伦, 陶 冶. 形状和原子数对纳米晶表面能的影响. 物理学报, 2006, 55(4): 1942-1946. doi: 10.7498/aps.55.1942
    [18] 杨 光, P. V. Santos. 声表面波对GaAs(110)量子阱发光特性的调制. 物理学报, 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [19] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [20] 刘舒曼, 刘峰奇, 张志华, 郭海清, 王占国. ZnO:Tb纳米晶的协同发光现象. 物理学报, 2000, 49(11): 2307-2309. doi: 10.7498/aps.49.2307
计量
  • 文章访问数:  13373
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-20
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-06-05

/

返回文章
返回