-
表面纳米气泡作为固液界面上形成的纳米级气体域,凭借其纳米级尺寸、快速动态响应特性及良好的生物相容性,在超声成像及抗菌消毒等生物医学领域展现出重要应用价值。在生物医学实际应用场景中,表面纳米气泡的稳定性直接关乎其功能发挥的效率与生物安全性。然而,表面纳米气泡的稳定性与经典热力学理论预测的微秒级时间内溶解存在显著矛盾,对稳定性理论模型的构建提出了迫切需求。现有理论模型虽从不同角度阐释表面纳米气泡的稳定性机制,但缺乏内在关联且存在各种局限性,制约了以稳定性为导向的表面纳米气泡定向优化。本文系统梳理了表面纳米气泡稳定性机制的研究进展,首先回顾了表面纳米气泡的发现历程;接着,讨论了污染屏障模型、动态平衡模型、接触线钉扎模型、局部过饱和模型、界面电荷富集模型以及内部高密度模型等多种理论模型的内在关联与局限性;最后,探讨了表面纳米气泡在生物医学领域的具体应用与面临的挑战,并基于其稳定性理论模型提出可能优化策略与展望。Surface nanobubbles, as nanoscale gaseous domains spontaneously formed at solid-liquid interfaces, exhibit significant application potential in the biomedical field owing to their unique nanoscale size effects, rapid dynamic response characteristics, and favorable biocompatibility. In ultrasonic imaging, surface nanobubbles enhance tissue acoustic contrast by generating strong harmonic scattering signals through nonlinear oscillation under stable cavitation. In antibacterial disinfection applications, the rupture of surface nanobubbles produces transient high pressure, synergizing with reactive oxygen species/hydroxyl radical mediated oxidative damage to achieve high-efficiency bacterial inactivation. However, in physiological environments, blood flow shear stress and pH fluctuations may induce premature rupture of surface nanobubbles, leading to imaging signal attenuation or risks of non-specific tissue damage, rendering their stability a critical factor determining functional efficacy and biosafety. Notably, the experimental observation of surface nanobubble lifetimes (ranging from hours to days) significantly contradicts the dissolution behavior within microseconds predicted by classical thermodynamic theory, which urgent demand for the construction of stability theoretical models. Existing theoretical models, though elucidating surface nanobubble stability mechanisms from multiple perspectives, are constrained by a lack of intrinsic correlation and inherent limitations, thereby limiting targeted optimization toward stability:the contamination barrier model emphasizes that surfactant adsorption inhibits gas diffusion; the dynamic equilibrium model explains that stability arises from the dynamic balance of gas exchange at the gas-liquid interface; the contact line pinning model reveals that substrate heterogeneity constrains the evolution of the three-phase contact line; the local supersaturation model proposes that local high-concentration gas layers formed by substrate adsorption delay dissolution; the interfacial charge enrichment model suggests that electrostatic pressure from the double layer counteracts the Laplace pressure driving dissolution; and the internal high-density model posits that condensed high-density gas inside reduces diffusion rate and partially counteracts the Laplace pressure. This review systematically summarizes the research progress on the stability mechanisms of surface nanobubbles:it first reviews the discovery history of surface nanobubbles; then deeply analyzes the core mechanisms, intrinsic correlations, and limitations of the aforementioned theoretical models; finally, combined with application examples in the biomedical field, it examines the technical challenges faced by surface nanobubbles and proposes potential optimization strategies and future perspectives based on their stability theoretical models.
-
Keywords:
- Surface nanobubbles /
- Stability /
- Theoretical models
-
[1] Lentacker I, De Cock I, Deckers R, De Smedt S C, Moonen C T W 2014Adv. Drug Delivery Rev. 72 49
[2] Zhou X Y, Guo L, Shi D D, Duan S J, Li J 2019Nanoscale Res. Lett. 14 1
[3] Yang H L, Cai W B, Xu L, Lv X H, Qiao Y B, Li P, Wu H, Yang Y L, Zhang L, Duan Y Y 2015Biomaterials 37 279
[4] Rafeeq S, Ovissipour R 2021Foods 10 2154
[5] Epstein P S, Plesset M S 1950J. Chem. Phys. 18 1505
[6] Ljunggren S, Eriksson J C 1997Colloids Surf. A 129 151
[7] Yang J W, Duan J M, Fornasiero D, Ralston J 2003J. Phys. Chem. B 107 6139
[8] Zhang X H, Quinn A, Ducker W A 2008Langmuir 24 4756
[9] Batchelor D V, Armistead F J, Ingram N, Peyman S A, McLaughlan J R, Coletta P L, Evans S D 2022Langmuir 38 13943
[10] Ducker W A 2009Langmuir 25 8907
[11] Brenner M P, Lohse D 2008Phys. Rev. Lett. 101 214505
[12] Zhang X H, Chan D Y, Wang D Y, Maeda N 2013Langmuir 29 1017
[13] Tan B H, An H J, Ohl C-D 2018Phys. Rev. Lett. 120 164502
[14] Chang A S, Niu B, Liu J, Han H R, Zhang Z B, Wang W 2023Particuology 81 128
[15] Zhou L M, Wang X Y, Shin H-J, Wang J, Tai R Z, Zhang X H, Fang H P, Xiao W, Wang L, Wang C L 2020J. Am. Chem. Soc. 142 5583
[16] Koshiyama K, Wada S 2016Sci. Rep. 6 28164
[17] Lohse D, Zhang X H 2015Rev. Mod. Phys. 87 981
[18] Tan B H, An H J, Ohl C-D 2021Curr. Opin. Colloid Interface Sci. 53 101428
[19] Sun L, Zhang F H, Guo X M, Qiao Z M, Zhu Y, Jin N, Cui Y, Yang W M 2022Particuology 60 99
[20] Parker J L, Claesson P M, Attard P 1994J. Phys. Chem. 98 8468
[21] Ishida N, Sakamoto M, Miyahara M, Higashitani K 2000Langmuir 16 5681
[22] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q, Yang F J 2000J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct Process, Meas, Phenom. 18 2573
[23] Ishida N, Inoue T, Miyahara M, Higashitani K 2000Langmuir 16 6377
[24] Holmberg M, Kühle A, Garnæs J, Mørch K A, Boisen A 2003Langmuir 19 10510
[25] Motornov M, Sheparovych R, Tokarev I, Roiter Y, Minko S 2007Langmuir 23 13
[26] Shen G X, Zhang X H, Ming Y, Zhang L J, Zhang Y, Hu J 2008J. Phys. Chem. C 112 4029
[27] Ball P 2003Nature 423 25
[28] Zhang X H, Khan A, Ducker W A 2007Phys. Rev. Lett. 98 136101
[29] Zhang X H 2008Phys. Chem. Chem. Phys. 10 6842
[30] Mezger M, Reichert H, Schöder S, Okasinski J, Schröder H, Dosch H, Palms D, Ralston J, Honkimäki V 2006Proc. Natl. Acad. Sci. 103 18401
[31] Steitz R, Gutberlet T, Hauss T, Klösgen B, Krastev R, Schemmel S, Simonsen A C, Findenegg G H 2003Langmuir 19 2409
[32] Switkes M, Ruberti J W 2004Appl. Phys. Lett. 84 4759
[33] Chan C U, Ohl C-D 2012Phys. Rev. Lett. 109 174501
[34] Barnes G T 1986Adv. Colloid Interface Sci. 25 89
[35] Dressaire E, Bee R, Bell D C, Lips A, Stone H A 2008Science 320 1198
[36] Zhang X H, Li G, Maeda N, Hu J 2006Langmuir 22 9238
[37] German S R, Wu X, An H J, Craig V S, Mega T L, Zhang X H 2014ACS Nano 8 6193
[38] Dietrich E, Zandvliet H J, Lohse D, Seddon J R 2013J. Phys.: Condens. Matter 25 184009
[39] Weijs J H, Lohse D 2013Phys. Rev. Lett. 110 054501
[40] Liu Y W, Wang J J, Zhang X R, Wang W C 2014J. Chem. Phys. 140 054705
[41] Liu Y W, Zhang X R 2014J. Chem. Phys. 141 134702
[42] Lohse D, Zhang X H 2015Phys. Rev. E 91 031003
[43] Chan C U, Arora M, Ohl C-D 2015Langmuir 31 7041
[44] An H J, Tan B H, Zeng Q Y, Ohl C-D 2016Langmuir 32 11212
[45] Wang L, Wang X Y, Wang L S, Hu J, Wang C L, Zhao B Y, Zhang X H, Tai R Z, He M D, Chen L Q 2017Nanoscale 9 1078
[46] Nag S, Tomo Y, Teshima H, Takahashi K, Kohno M 2021Phys. Chem. Chem. Phys. 23 24652
[47] Bull D S, Nelson N, Konetski D, Bowman C N, Schwartz D K, Goodwin A P 2018J. Phys. Chem. Lett. 9 4239
[48] Lan L L, Pan Y C, Zhou L M, Kuang H, Zhang L J, Wen B H 2025J. Colloid Interface Sci. 678 322
[49] Tan B H, An H J, Ohl C-D 2019Phys. Rev. Lett. 122 134502
[50] Zhang H G, Guo Z J, Zhang X R 2020Soft Matter 16 5470
[51] Ma X T, Li M B, Pfeiffer P, Eisener J, Ohl C-D, Sun C 2022J. Colloid Interface Sci. 606 1380
[52] Bunkin N F, Shkirin A V, Suyazov N V, Babenko V A, Sychev A A, Penkov N V, Belosludtsev K N, Gudkov S V 2016J. Phys. Chem. B 120 1291
[53] Wang C L, Li Z X, Li J Y, Xiu P, Hu J, Fang H P 2008Chin. Phys. B 17 2646
[54] Zhang L J, Chen H, Li Z X, Fang H P, Hu J 2008Sci. China, Ser. G 51 219
[55] Wang S, Zhou L M, Wang X Y, Wang C L, Dong Y M, Zhang Y, Gao Y X, Zhang L J, Hu J 2019Langmuir 35 2498
[56] Sun Z H, Gu Z H, Ma W 2023Anal. Chem. 95 3613
计量
- 文章访问数: 59
- PDF下载量: 1
- 被引次数: 0