搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展混合训练物理信息神经网络的非线性薛定谔方程求解和参数发现

王宇铎 陈嘉鑫 李彪

引用本文:
Citation:

基于扩展混合训练物理信息神经网络的非线性薛定谔方程求解和参数发现

王宇铎, 陈嘉鑫, 李彪

Solving Nonlinear Schrödinger Equations and Parameter Discovery via Extended Mixed-Training Physics-Informed Neural Networks

WANG Yuduo, CHEN Jiaxin, LI Biao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在本研究中,我们提出了扩展混合训练物理信息神经网络(X-MTPINNs),该模型通过整合扩展物理信息神经网络(X-PINNs)的域分解技术与混合训练物理信息神经网络(MTPINNs)框架,有效提升了非线性波动问题的求解能力。相较于经典PINNs模型,新模型具有双重优势:其一,混合训练框架通过优化初边值条件的处理机制,显著改善了模型收敛特性,在提升非线性波解拟合精度的同时,将计算时间降低约40%;其二,X-PINNs的域分解技术增强了模型对复杂动力学行为的表征能力。基于非线性薛定谔方程(NLSE)的数值实验表明,X-MTPINNs在亮双孤子解及三阶怪波求解以及参数反演等任务中均表现优异,其预测精度较传统PINNs提升一至两个数量级。对于逆问题,X-MTPINNs算法在有噪声和无噪声条件下都能准确识别NLSE中的未知参数,解决了经典PINNs在本研究条件下NLSE参数识别中完全失效的问题,表现出很强的鲁棒性。
    In recent years, Physics-Informed Neural Networks (PINNs) have provided effcient data-driven methods for solving both forward and inverse problems of partial differential equations (PDEs). However, when addressing complex PDEs, PINNs face significant challenges in computational effciency and accuracy. In this study, we propose the Extended Mixed-Training Physics-Informed Neural Networks (X-MTPINNs), as illustrated in fig. 1., which effectively enhance the capability for solving nonlinear wave problems by integrating the domain decomposition technique of extended Physics-Informed Neural Networks (X-PINNs) with the mixed-training Physics-Informed Neural Networks (MTPINNs) framework. Compared to the classical PINNs model, the new model exhibits dual advantages: First, the mixed-training framework significantly improves convergence properties by optimizing the handling mechanism of initial and boundary conditions, achieving higher fitting accuracy for nonlinear wave solutions while reducing the computation time by approximately 40%. Second, the domain decomposition technique from X-PINNs strengthens the model’s representation capability for complex dynamical behaviors. Numerical experiments based on the Nonlinear Schrödinger Equation (NLSE) demonstrate that X-MTPINNs excel in solving two bright solitons, third-order rogue waves, and parameter inversion tasks, with prediction accuracy improved by one to two orders of magnitude over traditional PINNs. For inverse problems, the X-MTPINNs algorithm accurately identifies unknown parameters in the NLSE under noise-free, 2%, and 5% noisy conditions, addressing the complete failure of classical PINNs in parameter identification for NLSE under the studied scenarios, thereby exhibiting strong robustness.
  • [1]

    Dissanayake M, PHAN-THIEN N 1994 Commun. Numer. Meth. Eng. 10 195

    [2]

    Lagaris I E, Likas A 1998 IEEE Trans. Neural Netw. 9 987

    [3]

    Eymard R, Gallouët T, Herbin R 2000 Handb. Numer. Anal. 7 713

    [4]

    Zhang Y 2009 Appl. Math. Comput. 215 524

    [5]

    Taylor C A, Hughes T J R, Zarins C K 1998 Comput. Methods Appl. Mech. Eng. 158 155

    [6]

    He K M, Zhang X Y,Ren S Q, Sun J 2016 CPRV. 2016-December 770

    [7]

    Ding Y, Li J T, Zhang J X, Li P P, Bai H, Fang B, Fang H X, Huang K, Wang G Y, Nowell C J, Voelcker N H, Peng B, Li L, Huang W 2025 Nat. Commun. 16 743

    [8]

    Liu J, Chen Y B, Liu K,Zhao J 2018 AAAI. 32 4865

    [9]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686

    [10]

    Wang F J, Zhai Z, Zhao Z B, Di Y, Chen X F 2024 Nat. Commun. 15 4332

    [11]

    James D, Alireza D, Soroush A 2019 Sci. Total Environ. 912 168814

    [12]

    Xu S F, Sun Z X, Huang R F, Guo D L, Yang G W, Ju S J 2023 AMS. 39 322302

    [13]

    Chiu P H, Wong J C, Ooi C C, Dao H 2022 Comput. Methods Appl. Mech. Eng. 395 114909

    [14]

    Yang L, Meng X H, Karniadakis G E 2021 J. Comput. Phys. 425 109913

    [15]

    Mojgani R, Balajewicz M, Hassanzadeh P 2023 Comput. Methods Appl. Mech. Eng. 404 115810

    [16]

    Jagtap A D, Karniadakis G E 2021 CEUR Workshop Proc. 2964

    [17]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526

    [18]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Physica D 433 133192

    [19]

    Fang Y, Bo W B, Wang R R, Wang Y Y, Dai C Q 2022 Chaos Solit. Fractals 165 112908

    [20]

    Li W T, Chen Y P, Zhang Z, Yang X Y, Li B 2025 Chin. Phys. Lett. 42 010202

    [21]

    Chen M, Wang Z 2023 Chin. Phys. B 32 090504

    [22]

    Li J, Chen Y 2020 Commun. Theor. Phys. 72 105005

    [23]

    Li J, Chen Y 2020 Commun. Theor. Phys. 72 115003

    [24]

    Song J, Zhong M, Karniadakis G E, Yan Z Y 2024 J. Comput. Phys. 505 112917

    [25]

    Wang X L, Wu Z K, Song J, Han W J, Yan Z Y 2024 Chaos Solit. Fractals 180 114509

    [26]

    Qiu T W, Wei G M, Song Y X, Wang Z 2025 Appl. Math. Mech. 46 105

    [27]

    Tian S F, Li B 2023 Acta Phys. Sin. 72 100202

    [28]

    Li J H, Li B 2022 Chaos Solit. Fractals 164 112712

    [29]

    Tian S F, Li B, Zhang Z 2024 Chin. Phys. Lett. 41 030201

    [30]

    Zhou H J, Pu J C, Chen Y 2023 Nonlinear Dyn. 111 14667

    [31]

    Qiu W X, Si Z Z, Mou D S, Dai C Q, Li J T, Liu W 2025 Nonlinear Dyn. 113 4063

    [32]

    Liu X M, Zhang Z Y, Liu W J 2023 Chin. Phys. Lett. 40 070501

    [33]

    Liu H Y, Zhang Y B, Wang L 2024 J. Syst. Sci. 37 494

    [34]

    Zhang W X, Chen Y 2024 Nonlinear Dyn.

    [35]

    Pu J C, Chen Y 2024 J. Comput. Phys. 510 113090

    [36]

    Zhang J F, Dai C Q, Wang Y Y 2016 Rogue Wave Theory and Its Applications Based on the Nonlinear Schrödinger Equation (Beijing: Science Press) pp44-63 (in Chinese) [张解放, 戴朝卿, 王悦悦 2016 基于非线性薛定谔方程的畸形波理论及其应用(北京:科学出版社)第 44-63 页]

  • [1] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, doi: 10.7498/aps.73.20231514
    [2] 郭静, 吴奇, 孙力玲. 抵御大变形超导体的发现. 物理学报, doi: 10.7498/aps.72.20231341
    [3] 牛晓东, 卢莉蓉, 王鉴, 韩星程, 郭树言, 王黎明. 基于改进经验模态分解域内心动物理特征识别模式分量的心电信号重建. 物理学报, doi: 10.7498/aps.70.20201122
    [4] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, doi: 10.7498/aps.67.20172171
    [5] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究. 物理学报, doi: 10.7498/aps.67.20180419
    [6] 杨耀东. 铁电材料中发现等温相变. 物理学报, doi: 10.7498/aps.65.070101(R)
    [7] 胡庆成, 张勇, 许信辉, 邢春晓, 陈池, 陈信欢. 一种新的复杂网络影响力最大化发现方法. 物理学报, doi: 10.7498/aps.64.190101
    [8] 王童, 童创明, 李西敏, 李昌泽. 扩展性微动目标回波模拟与特征参数提取研究. 物理学报, doi: 10.7498/aps.64.210301
    [9] 王云峰, 顾成明, 张晓辉, 王雨顺, 韩月琪, 王耘锋. 优化模式物理参数的扩展四维变分同化方法. 物理学报, doi: 10.7498/aps.63.240202
    [10] 颜扬治, 丁志华, 王玲, 沈毅. 联合谱域与深度域光谱相位显微方法. 物理学报, doi: 10.7498/aps.62.164204
    [11] 尹柏强, 何怡刚, 吴先明. 心磁信号广义S变换域奇异值分解滤波方法. 物理学报, doi: 10.7498/aps.62.148702
    [12] 张聪, 沈惠璋, 李峰, 杨何群. 复杂网络中社团结构发现的多分辨率密度模块度. 物理学报, doi: 10.7498/aps.61.148902
    [13] 吕天阳, 谢文艳, 郑纬民, 朴秀峰. 加权复杂网络社团的评价指标及其发现算法分析. 物理学报, doi: 10.7498/aps.61.210511
    [14] 李扬, 郭树旭. 基于稀疏分解的大功率半导体激光器1/f噪声参数估计的新方法. 物理学报, doi: 10.7498/aps.61.034208
    [15] 李红祺, 郭维栋, 孙国栋, 张耀存. 条件非线性最优扰动方法在陆面过程模式参数优化中的扩展应用初探. 物理学报, doi: 10.7498/aps.60.019201
    [16] 陈章耀, 张晓芳, 毕勤胜. 广义Chua电路簇发现象及其分岔机理. 物理学报, doi: 10.7498/aps.59.2326
    [17] 张晓芳, 陈章耀, 毕勤胜. 周期激励下Chen系统的簇发现象分析. 物理学报, doi: 10.7498/aps.59.3802
    [18] 尉伟峰. 选择模型的理论扩展分析. 物理学报, doi: 10.7498/aps.58.7414
    [19] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解. 物理学报, doi: 10.7498/aps.56.3022
    [20] 邵常贵, 肖俊华, 邵亮, 邵丹, 陈贻汉, 潘贵军. 扩展的纽结量子引力态. 物理学报, doi: 10.7498/aps.51.1467
计量
  • 文章访问数:  25
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-19

/

返回文章
返回