搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卡尔曼滤波的本地本振连续变量量子秘密共享

廖骎 费焯迎 王一军

引用本文:
Citation:

基于卡尔曼滤波的本地本振连续变量量子秘密共享

廖骎, 费焯迎, 王一军

Continuous-variable quantum secret sharing with local local oscillator based on Kalman filter

LIAO Qin, FEI Zhuo-Ying, WANG Yi-Jun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在实际的连续变量量子秘密共享系统中,经不安全信道传输的本振光或因各种针对性攻击而受到安全威胁.针对这个问题,本文提出了一种本地本振连续变量量子秘密共享方案,本振光在可信端本地生成而无需由各用户发送,从而彻底堵住相关安全漏洞.在此基础上,利用卡尔曼滤波对各个参考相位分别进行最小均方误差估计,在降低相位漂移估计误差的同时抑制相位测量噪声.分别开发了涉及标量卡尔曼和矢量卡尔曼的相位补偿方法,其中矢量卡尔曼一步完成补偿而无需额外处理相位慢漂移.本文对滤波后系统的过噪声进行建模,并推导了针对窃听者和不诚实用户的安全界限.数值模拟结果表明,与块平均相比,所提方案在最大传输距离和最大支持用户数方面优势明显,具有构建大规模量子通信网络的潜力.
    In a practical continuous-variable quantum secret sharing system, the local oscillator transmitted via an insecure channel may be subject to security threats due to various targeted attacks. To address this problem, this paper proposes a continuous-variable quantum secret sharing scheme with local local oscillator, in which the local oscillator is generated locally at the trusted end without being sent by each user, thus completely plugging the relevant security loopholes. The scheme consists of three stages: preparation, where users generate Gaussian-modulated coherent states and reference signals; measurement, where the dealer performs heterodyne detection using the local local oscillator and reference phases; and post-processing, involving parameter estimation, phase compensation, and secure key extraction. On this basis, Kalman filter is utilized to estimate the minimum mean square error for each reference phase separately, reducing the phase drift estimation error and suppressing the phase measurement noise. Phase compensation methods for scalar Kalman filter and vector Kalman filter are developed respectively, where scalar KF requires additional block averaging for slow phase drift, while vector KF simultaneously models fast and slow drifts, enabling one-step compensation with minimized estimation errors. The excess noise of the filtered system including modulation noise, phase noise, photon leakage noise, and ADC quantization noise is modeled, with KF reducing phase measurement noise via dynamic gain optimization. Security bound against eavesdroppers and dishonest users is derived. Numerical simulations under practical parameters demonstrate significant improvements: vector KF achieves a maximum transmission distance of 82.6 km (vs. 67.3 km for block averaging) and supports 33 users (vs. 22), with excess noise reduced by 40% at 60 km. The scheme’s robustness is further validated under varying reference signal amplitudes, showing stable performance even with lower, minimizing interference with quantum signals. These results highlight the proposed scheme has significant advantages in terms of maximum transmission distance and maximum number of supported users, and has the potential to build adaptive KF algorithms for dynamic user scenarios and quantum machine learning integration.
  • [1]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829

    [2]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162

    [3]

    Tyc T, Sanders B C 2002 Phys. Rev. A 65 042310

    [4]

    Lance A M, Symul T, Bowen W P, Tyc T, Sanders B C, Lam P K 2003 New J. Phys. 5 4

    [5]

    Liao Q, Xiao G, Xu C G, Xu Y, Guo Y 2020 Phys. Rev. A 102 032604

    [6]

    Kogias I, Xiang Y, He Q, Adesso G 2017 Phys. Rev. A 95 012315

    [7]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339

    [8]

    Wang Y, Jia B, Mao Y, Wu X, Guo Y 2020 Appl. Sci. 10 2411

    [9]

    Liao Q, Liu H, Zhu L, Guo Y 2021 Phys. Rev. A 103 032410

    [10]

    Liao Q, Liu X, Ou B, Fu X 2023 IEEE Trans. Commun. 71 6051-6060

    [11]

    Liao Q, Wang Z, Liu H, Mao Y, Fu X 2022 Phys. Rev. A 106 022607

    [12]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 87 052309

    [13]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 87 062313

    [14]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 88 022339

    [15]

    Zhao Y, Zhang Y, Huang Y, Xu B, Yu S, Guo H 2018 J. Phys. B-At. Mol. Opt. Phy. 52 015501

    [16]

    Zheng Y, Huang P, Peng J Y, Zeng G H 2019 Information and Communications Technology and Policy 45 43 (in Chinese) [郑异, 黄鹏, 彭进业, 曾贵华 2019 信息通信技术与政策 45 43]

    [17]

    Liao Q, Huang L, Fei Z Y, Fu X Q 2025 Adv. Quantum Technol. 2400505

    [18]

    Kunz-Jacques S, Jouguet P 2015 Phys. Rev. A 91 022307

    [19]

    Mao Y, Huang W, Zhong H, Wang Y, Qin H, Guo Y, Huang D 2020 New J. Phys. 22 083073

    [20]

    Liao Q, Liu H, Gong Y, Wang Z, Peng Q, Guo Y 2022 Opt. Express 30 3876-3892

    [21]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009

    [22]

    Wang T, Huang P, Zhou Y, Liu W, Ma H, Wang S, Zeng G 2018 Opt. Express 26 2794-2806

    [23]

    Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang T, Huang W, Xu B J 2022 Commun. Phys. 5 162

    [24]

    Marie A, Alléaume R 2017 Phys. Rev. A 95 012316

    [25]

    Wang H, Pi Y D, Huang W, Li Y, Shao Y, Yang J, Liu J L, Zhang C L, Zhang Y C, Xu B J 2020 Opt. Express 28 32882-32893

    [26]

    Zhang Y, Bian Y, Li Z, Yu S, Guo H 2024 Appl. Phys. Rev. 11

    [27]

    Huang B, Ma T T, Huang Y M, Peng Z M 2021 Laser Optoelectron. Prog. 58 1127001 (in Chinese) [黄彪, 麻甜甜, 黄永梅, 彭真明 2021 激光与光电子学进展 58 1127001]

    [28]

    Roy S, Petersen I R, Huntington E H 2015 New J. Phys. 17 063020

    [29]

    Liu X C, Wen J X, Li S B, Li H G, Sun S L 2023 Chin. J. Lasers 50 1412002-1412002 (in Chinese) [刘旭超, 温佳旭, 李少波, 李华贵, 孙时伦 2023 中国激光 50 1412002-1412002]

    [30]

    Shen T, Wang X, Chen Z, Tian H, Yu S, Guo H 2023 IEEE Photonics J. 15 1-9

    [31]

    Ren S, Kumar R, Wonfor A, Tang X, Penty R, White I 2019 JOSA B 36 B7-B15

    [32]

    Huang B, Huang Y M, Peng Z M 2019 Acta Opt. Sin. 39 1127001 (in Chinese) [黄彪, 黄永梅, 彭真明 2019 光学学报 39 1127001]

    [33]

    Roy S, Rehman O U, Petersen I R, Huntington E H 2014 European Control Con-ference p896-901

    [34]

    Wang T, Huang P, Wang S, Zeng G 2019 Opt. Express 27 26689-26700

    [35]

    Hajomer A A, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474

    [36]

    Su Y, Guo Y, Huang D 2019 Phys. Lett. A 383 2394-2399

    [37]

    Huang B, Huang Y, Peng Z 2020 Opt. Express 28 28727-28739

    [38]

    Zhong H, Ye W, Zuo Z, Huang D, Guo Y 2022 Opt. Express 30 5981-6002

    [39]

    Diamanti E, Leverrier A 2015 Entropy 17 6072-6092

    [40]

    Inoue T, Namiki S 2014 Opt. Express 22 15376-15387

    [41]

    Huang B, Huang Y, Peng Z 2019 Opt. Express 27 20621-20631

    [42]

    Shao Y, Pan Y, Wang H, Pi Y D, Li Y, Ma L, Zhang Y C, Huang W, Xu B J 2022 Entropy 24 992

    [43]

    Shao Y, Wang H, Pi Y D, Huang W, Li Y, Liu J L, Yang J, Zhang Y C, Xu B J 2021 Phys. Rev. A 104 032608

    [44]

    Kish S P, Villaseñor E, Malaney R, Mudge K A, Grant K J 2021 IEEE Interna-tional Conference on Communications p1-6

    [45]

    Shao Y, Li Y, Wang H, Pan Y, Pi Y D, Zhang Y C, Huang W, Xu B J 2022 Phys. Rev. A 105 032601

    [46]

    Wang T, Huang P, Zhou Y, Liu W, Zeng G 2018 Phys. Rev. A 97 012310

    [47]

    Huang P, Lin D K, Huang D, Zeng, G H 2015 Int. J. Theor. Phys. 54 2613-2622

    [48]

    Jouguet P, Kunz-Jacques S, Diamanti E, Leverrier A 2012 Phys. Rev. A-Atom. Mol. Opt. Phy. 86 032309

    [49]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201

    [50]

    Chin H M, Jain N, Zibar D, Andersen U L, Gehring T 2021 Npj Quantum Inf. 7 20

    [51]

    Sun Y H, Chen Z Y, Wang X Y, Yu S, Guo H 2025 Phys. Rev. Appl. 23(1) 014056

    [52]

    Oruganti A N, Derkach I, Filip R, Usenko V C 2025 Quantum Sci. Technol. 10 025023

    [53]

    Liu Y M, Jiang X Q, Dai J S, Hai H, Huang P 2025 Quantum Sci. Technol. 10 025043

    [54]

    Liao Q, Fei Z Y, Huang L, Fu X Q 2025 Commun. Phys. 8(1) 138

    [55]

    Ren S, Yang S, Wonfor A, White I, Penty R 2021 Sci. Rep. 11 9454

    [56]

    Soh D B, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J, Sarovar M 2015 Phys. Rev. X 5 041010

    [57]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A-Atom. Mol. Opt. Phy. 76 042305

    [58]

    Rui X, He H W, Sun F C, Zhao K 2013 IEEE Trans. Veh. Technol. 62(1) 108-117

    [59]

    Liao Q, Fei Z Y, Liu J Y, Huang A Q, Huang L, Wang Y J 2025 Chaos Soliton. Fract. 196 116331

  • [1] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, doi: 10.7498/aps.73.20241094
    [2] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, doi: 10.7498/aps.73.20230138
    [3] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, doi: 10.7498/aps.71.20221072
    [4] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, doi: 10.7498/aps.71.20212341
    [5] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, doi: 10.7498/aps.71.20220635
    [6] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案. 物理学报, doi: 10.7498/aps.70.20200855
    [7] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, doi: 10.7498/aps.70.20201981
    [8] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, doi: 10.7498/aps.70.20202073
    [9] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, doi: 10.7498/aps.69.20191689
    [10] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, doi: 10.7498/aps.68.20181911
    [11] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享. 物理学报, doi: 10.7498/aps.65.160301
    [12] 韦克金, 马海强, 汪龙. 一种基于双偏振分束器的量子秘密共享方案. 物理学报, doi: 10.7498/aps.62.104205
    [13] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, doi: 10.7498/aps.62.070301
    [14] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, doi: 10.7498/aps.61.014206
    [15] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, doi: 10.7498/aps.61.154206
    [16] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, doi: 10.7498/aps.58.2184
    [17] 孙 莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣. 具有双向认证功能的量子秘密共享方案. 物理学报, doi: 10.7498/aps.57.4689
    [18] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, doi: 10.7498/aps.56.5
    [19] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享. 物理学报, doi: 10.7498/aps.55.3255
    [20] 李 军, 刘君华. 一种新型广义RBF神经网络在混沌时间序列预测中的研究. 物理学报, doi: 10.7498/aps.54.4569
计量
  • 文章访问数:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-12

/

返回文章
返回