搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卡尔曼滤波的本地本振连续变量量子秘密共享

廖骎 费焯迎 王一军

引用本文:
Citation:

基于卡尔曼滤波的本地本振连续变量量子秘密共享

廖骎, 费焯迎, 王一军

Kalman filter based local intrinsic continuous-variable quantum secret sharing

LIAO Qin, FEI Zhuoying, WANG Yijun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在实际的连续变量量子秘密共享系统中, 经不安全信道传输的本振光或因各种针对性攻击而受到安全威胁. 针对这个问题, 本文提出了一种本地本振连续变量量子秘密共享方案, 本振光在可信端本地生成而无需由各用户发送, 从而彻底堵住相关安全漏洞. 在此基础上, 利用卡尔曼滤波对各个参考相位分别进行最小均方误差估计, 在降低相位漂移估计误差的同时抑制相位测量噪声. 分别开发了涉及标量卡尔曼和矢量卡尔曼的相位补偿方法, 其中矢量卡尔曼一步完成补偿而无需额外处理相位慢漂移. 本文对滤波后系统的过噪声进行建模, 并推导了针对窃听者和不诚实用户的安全界限. 数值模拟结果表明, 与块平均相比, 所提方案在最大传输距离和最大支持用户数方面优势明显, 具有构建大规模量子通信网络的潜力.
    In a practical continuous-variable quantum secret sharing system, the local oscillator transmitted via an insecure channel may be subjected to security threats due to various targeted attacks. To solve this problem, this paper proposes a continuous-variable quantum secret sharing scheme with local intrinsic oscillator, in which the intrinsic oscillator is generated locally at the trusted end without being sent by each user, thus completely plugging the relevant security loopholes. The scheme consists of three stages: preparation, where users generate Gaussian-modulated coherent states and reference signals; measurement, where the dealer performs heterodyne detection by using the local intrinsic oscillator and reference phases; post-processing, which involves parameter estimation, phase compensation, and secure key extraction. On this basis, Kalman filter (KF) is utilized to estimate the minimum mean square error for each reference phase separately, reducing the phase drift estimation error and suppressing the phase measurement noise. Phase compensation methods for scalar KF and vector KF are developed respectively, where scalar KF requires additional block averaging for slow phase drift, while vector KF simultaneously models fast and slow drifts, enabling one-step compensation with minimized estimation errors. The excess noise of the filtered system including modulation noise, phase noise, photon leakage noise, and ADC quantization noise is modeled, with KF reducing phase measurement noise via dynamic gain optimization. Security bound against eavesdroppers and dishonest users is derived. Numerical simulations under practical parameters demonstrate significant improvements: vector KF achieves a maximum transmission distance of 82.6 km (vs. 67.3 km for block averaging) and supports 33 users (vs. 22), with excess noise reduced by 40% at 60 km. The scheme’s robustness is further validated under varying reference signal amplitudes, showing stable performance even at lower levels, minimizing interference with quantum signals. These results highlight that the proposed scheme has significant advantages in terms of maximum transmission distance and maximum number of supported users, and has the potential to build adaptive KF algorithms for dynamic user scenarios and quantum machine learning integration.
  • 图 1  基于KF的LLO-CVQSS示意图

    Fig. 1.  Schematic diagram of KF-based LLO-CVQSS.

    图 2  不同相位补偿方法下所提方案性能, 插图为相位漂移估计误差与相位测量误差的函数关系

    Fig. 2.  Performance of the proposed scheme with different phase compensation methods, and the subplot shows the phase drift estimation error as a function of the phase measurement error.

    图 3  不同参考信号幅值下所提方案与块平均方案性能; 小图为传输距离60 km时系统过噪声与$ {\left| {{\alpha _{\text{R}}}} \right|^2} $的函数关系

    Fig. 3.  Performance of the proposed scheme and block averaging for different reference signal amplitudes, and the small figure shows the excess noise as a function of $ {\left| {{\alpha _{\text{R}}}} \right|^2} $ at a transmission distance of 60 km.

    图 4  不同(n, n)阈值下所提方案和块平均方案性能

    Fig. 4.  Performance of the proposed scheme and block averaging for different (n, n) thresholds.

  • [1]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [2]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162Google Scholar

    [3]

    Tyc T, Sanders B C 2002 Phys. Rev. A 65 042310Google Scholar

    [4]

    Lance A M, Symul T, Bowen W P, Tyc T, Sanders B C, Lam P K 2003 New J. Phys. 5 4Google Scholar

    [5]

    Liao Q, Xiao G, Xu C G, Xu Y, Guo Y 2020 Phys. Rev. A 102 032604Google Scholar

    [6]

    Kogias I, Xiang Y, He Q, Adesso G 2017 Phys. Rev. A 95 012315Google Scholar

    [7]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar

    [8]

    Wang Y J, Jia B, Mao Y, Wu X L, Guo Y 2020 Appl. Sci. 10 2411Google Scholar

    [9]

    Liao Q, Liu H J, Zhu L J, Guo Y 2021 Phys. Rev. A 103 032410Google Scholar

    [10]

    Liao Q, Liu X Q, Ou B, Fu X Q 2023 IEEE Trans. Commun. 71 6051Google Scholar

    [11]

    Liao Q, Wang Z, Liu H, Mao Y, Fu X 2022 Phys. Rev. A 106 022607Google Scholar

    [12]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 87 052309Google Scholar

    [13]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 87 062313Google Scholar

    [14]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 88 022339Google Scholar

    [15]

    Zhao Y J, Zhang Y C, Huang Y D, Xu B J, Yu S, Guo H 2018 J. Phys. B-At. Mol. Opt. Phy. 52 015501

    [16]

    郑异, 黄鹏, 彭进业, 曾贵华 2019 信息通信技术与政策 45 43Google Scholar

    Zheng Y, Huang P, Peng J Y, Zeng G H 2019 Inf. Commun. Technol. Policy 45 43Google Scholar

    [17]

    Liao Q, Huang L, Fei Z Y, Fu X Q 2025 Adv. Quantum Technol. 8 2400505 doi: 10.1002/qute.202400505

    [18]

    Kunz-Jacques S, Jouguet P 2015 Phys. Rev. A 91 022307Google Scholar

    [19]

    Mao Y Y, Huang W T, Zhong H, Wang Y J, Qin H, Guo Y, Huang D 2020 New J. Phys. 22 083073Google Scholar

    [20]

    Liao Q, Liu H J, Gong Y P, Wang Z, Peng Q Q, Guo Y 2022 Opt. Express 30 3876Google Scholar

    [21]

    Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009

    [22]

    Wang T, Huang P, Zhou Y M, Liu W Q, Ma H X, Wang S Y, Zeng G H 2018 Opt. Express 26 2794Google Scholar

    [23]

    Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang T, Huang W, Xu B J 2022 Commun. Phys. 5 162Google Scholar

    [24]

    Marie A, Alléaume R 2017 Phys. Rev. A 95 012316Google Scholar

    [25]

    Wang H, Pi Y D, Huang W, Li Y, Shao Y, Yang J, Liu J L, Zhang C L, Zhang Y C, Xu B J 2020 Opt. Express 28 32882Google Scholar

    [26]

    Zhang Y C, Bian Y M, Li Z Y, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [27]

    黄彪, 麻甜甜, 黄永梅, 彭真明 2021 激光与光电子学进展 58 1127001

    Huang B, Ma T T, Huang Y M, Peng Z M 2021 Laser Optoelectron. Prog. 58 1127001

    [28]

    Roy S, Petersen I R, Huntington E H 2015 New J. Phys. 17 063020Google Scholar

    [29]

    刘旭超, 温佳旭, 李少波, 李华贵, 孙时伦 2023 中国激光 50 1412002Google Scholar

    Liu X C, Wen J X, Li S B, Li H G, Sun S L 2023 Chin. J. Lasers 50 1412002Google Scholar

    [30]

    Shen T, Wang X Y, Chen Z Y, Tian H P, Yu S, Guo H 2023 IEEE Photonics J. 15 7600109

    [31]

    Ren S J, Kumar R, Wonfor A, Tang X K, Penty R, White I 2019 JOSA B 36 B7Google Scholar

    [32]

    黄彪, 黄永梅, 彭真明 2019 光学学报 39 1127001Google Scholar

    Huang B, Huang Y M, Peng Z M 2019 Acta Opt. Sin. 39 1127001Google Scholar

    [33]

    Roy S, Rehman O U, Petersen I R, Huntington E H 2014 European Control Conference Strasbourg, France, June 24—26, 2014 pp896—901

    [34]

    Wang T, Huang P, Wang S Y, Zeng G H 2019 Opt. Express 27 26689Google Scholar

    [35]

    Hajomer A A, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [36]

    Su Y, Guo Y, Huang D 2019 Phys. Lett. A 383 2394Google Scholar

    [37]

    Huang B, Huang Y M, Peng Z M 2020 Opt. Express 28 28727Google Scholar

    [38]

    Zhong H, Ye W, Zuo Z Y, Huang D, Guo Y 2022 Opt. Express 30 5981Google Scholar

    [39]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [40]

    Inoue T, Namiki S 2014 Opt. Express 22 15376Google Scholar

    [41]

    Huang B, Huang Y M, Peng Z M 2019 Opt. Express 27 20621Google Scholar

    [42]

    Shao Y, Pan Y, Wang H, Pi Y D, Li Y, Ma L, Zhang Y C, Huang W, Xu B J 2022 Entropy 24 992Google Scholar

    [43]

    Shao Y, Wang H, Pi Y D, Huang W, Li Y, Liu J L, Yang J, Zhang Y C, Xu B J 2021 Phys. Rev. A 104 032608Google Scholar

    [44]

    Kish S P, Villaseñor E, Malaney R, Mudge K A, Grant K J 2021 IEEE International Conference on Communications Montreal, Quebec, June 14-18, 2021 pp1-6

    [45]

    Shao Y, Li Y, Wang H, Pan Y, Pi Y D, Zhang Y C, Huang W, Xu B J 2022 Phys. Rev. A 105 032601Google Scholar

    [46]

    Wang T, Huang P, Zhou Y M, Liu W Q, Zeng G H 2018 Phys. Rev. A 97 012310Google Scholar

    [47]

    Huang P, Lin D K, Huang D, Zeng, G H 2015 Int. J. Theor. Phys. 54 2613-2622Google Scholar

    [48]

    Jouguet P, Kunz-Jacques S, Diamanti E, Leverrier A 2012 Phys. Rev. A-Atom. Mol. Opt. Phy. 86 032309Google Scholar

    [49]

    Huang D, Huang P, Lin D K, Zeng G H 2016 Sci. Rep. 6 19201Google Scholar

    [50]

    Chin H M, Jain N, Zibar D, Andersen U L, Gehring T 2021 Npj Quantum Inf. 7 20Google Scholar

    [51]

    Sun Y H, Chen Z Y, Wang X Y, Yu S, Guo H 2025 Phys. Rev. Appl. 23 014056Google Scholar

    [52]

    Oruganti A N, Derkach I, Filip R, Usenko V C 2025 Quantum Sci. Technol. 10 025023Google Scholar

    [53]

    Liu Y M, Jiang X Q, Dai J S, Hai H, Huang P 2025 Quantum Sci. Technol. 10 025043Google Scholar

    [54]

    Liao Q, Fei Z Y, Huang L, Fu X Q 2025 Commun. Phys. 8 138Google Scholar

    [55]

    Ren S J, Yang S, Wonfor A, White I, Penty R 2021 Sci. Rep. 11 9454Google Scholar

    [56]

    Soh D B, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J, Sarovar M 2015 Phys. Rev. X 5 041010

    [57]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A-Atom. Mol. Opt. Phy. 76 042305Google Scholar

    [58]

    Rui X, He H W, Sun F C, Zhao K 2013 IEEE Trans. Veh. Technol. 62 108Google Scholar

    [59]

    Liao Q, Fei Z Y, Liu J Y, Huang A Q, Huang L, Wang Y J 2025 Chaos Soliton. Fract. 196 116331Google Scholar

  • [1] 陈云, 李璇冰, 李帅. 基于正交乘积态的多方量子秘密共享协议. 物理学报, doi: 10.7498/aps.74.20250394
    [2] 尹华磊, 沈建宇, 陈诺, 陈增兵. 量子秘密共享研究现状与展望. 物理学报, doi: 10.7498/aps.74.20250586
    [3] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, doi: 10.7498/aps.73.20241094
    [4] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, doi: 10.7498/aps.73.20230138
    [5] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, doi: 10.7498/aps.71.20221072
    [6] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, doi: 10.7498/aps.71.20212341
    [7] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, doi: 10.7498/aps.71.20220635
    [8] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案. 物理学报, doi: 10.7498/aps.70.20200855
    [9] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, doi: 10.7498/aps.70.20202073
    [10] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, doi: 10.7498/aps.69.20191689
    [11] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, doi: 10.7498/aps.68.20181911
    [12] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享. 物理学报, doi: 10.7498/aps.65.160301
    [13] 韦克金, 马海强, 汪龙. 一种基于双偏振分束器的量子秘密共享方案. 物理学报, doi: 10.7498/aps.62.104205
    [14] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, doi: 10.7498/aps.62.070301
    [15] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, doi: 10.7498/aps.61.014206
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, doi: 10.7498/aps.61.154206
    [17] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, doi: 10.7498/aps.58.2184
    [18] 孙 莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣. 具有双向认证功能的量子秘密共享方案. 物理学报, doi: 10.7498/aps.57.4689
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, doi: 10.7498/aps.56.5
    [20] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享. 物理学报, doi: 10.7498/aps.55.3255
计量
  • 文章访问数:  330
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-25
  • 修回日期:  2025-04-30
  • 上网日期:  2025-06-12

/

返回文章
返回