-
在实际的连续变量量子秘密共享系统中, 经不安全信道传输的本振光或因各种针对性攻击而受到安全威胁. 针对这个问题, 本文提出了一种本地本振连续变量量子秘密共享方案, 本振光在可信端本地生成而无需由各用户发送, 从而彻底堵住相关安全漏洞. 在此基础上, 利用卡尔曼滤波对各个参考相位分别进行最小均方误差估计, 在降低相位漂移估计误差的同时抑制相位测量噪声. 分别开发了涉及标量卡尔曼和矢量卡尔曼的相位补偿方法, 其中矢量卡尔曼一步完成补偿而无需额外处理相位慢漂移. 本文对滤波后系统的过噪声进行建模, 并推导了针对窃听者和不诚实用户的安全界限. 数值模拟结果表明, 与块平均相比, 所提方案在最大传输距离和最大支持用户数方面优势明显, 具有构建大规模量子通信网络的潜力.In a practical continuous-variable quantum secret sharing system, the local oscillator transmitted via an insecure channel may be subjected to security threats due to various targeted attacks. To solve this problem, this paper proposes a continuous-variable quantum secret sharing scheme with local intrinsic oscillator, in which the intrinsic oscillator is generated locally at the trusted end without being sent by each user, thus completely plugging the relevant security loopholes. The scheme consists of three stages: preparation, where users generate Gaussian-modulated coherent states and reference signals; measurement, where the dealer performs heterodyne detection by using the local intrinsic oscillator and reference phases; post-processing, which involves parameter estimation, phase compensation, and secure key extraction. On this basis, Kalman filter (KF) is utilized to estimate the minimum mean square error for each reference phase separately, reducing the phase drift estimation error and suppressing the phase measurement noise. Phase compensation methods for scalar KF and vector KF are developed respectively, where scalar KF requires additional block averaging for slow phase drift, while vector KF simultaneously models fast and slow drifts, enabling one-step compensation with minimized estimation errors. The excess noise of the filtered system including modulation noise, phase noise, photon leakage noise, and ADC quantization noise is modeled, with KF reducing phase measurement noise via dynamic gain optimization. Security bound against eavesdroppers and dishonest users is derived. Numerical simulations under practical parameters demonstrate significant improvements: vector KF achieves a maximum transmission distance of 82.6 km (vs. 67.3 km for block averaging) and supports 33 users (vs. 22), with excess noise reduced by 40% at 60 km. The scheme’s robustness is further validated under varying reference signal amplitudes, showing stable performance even at lower levels, minimizing interference with quantum signals. These results highlight that the proposed scheme has significant advantages in terms of maximum transmission distance and maximum number of supported users, and has the potential to build adaptive KF algorithms for dynamic user scenarios and quantum machine learning integration.
-
Keywords:
- quantum secret sharing /
- continuous variable /
- local local oscillator /
- Kalman filter
-
图 3 不同参考信号幅值下所提方案与块平均方案性能; 小图为传输距离60 km时系统过噪声与$ {\left| {{\alpha _{\text{R}}}} \right|^2} $的函数关系
Fig. 3. Performance of the proposed scheme and block averaging for different reference signal amplitudes, and the small figure shows the excess noise as a function of $ {\left| {{\alpha _{\text{R}}}} \right|^2} $ at a transmission distance of 60 km.
-
[1] Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829
Google Scholar
[2] Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59 162
Google Scholar
[3] Tyc T, Sanders B C 2002 Phys. Rev. A 65 042310
Google Scholar
[4] Lance A M, Symul T, Bowen W P, Tyc T, Sanders B C, Lam P K 2003 New J. Phys. 5 4
Google Scholar
[5] Liao Q, Xiao G, Xu C G, Xu Y, Guo Y 2020 Phys. Rev. A 102 032604
Google Scholar
[6] Kogias I, Xiang Y, He Q, Adesso G 2017 Phys. Rev. A 95 012315
Google Scholar
[7] Grice W P, Qi B 2019 Phys. Rev. A 100 022339
Google Scholar
[8] Wang Y J, Jia B, Mao Y, Wu X L, Guo Y 2020 Appl. Sci. 10 2411
Google Scholar
[9] Liao Q, Liu H J, Zhu L J, Guo Y 2021 Phys. Rev. A 103 032410
Google Scholar
[10] Liao Q, Liu X Q, Ou B, Fu X Q 2023 IEEE Trans. Commun. 71 6051
Google Scholar
[11] Liao Q, Wang Z, Liu H, Mao Y, Fu X 2022 Phys. Rev. A 106 022607
Google Scholar
[12] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 87 052309
Google Scholar
[13] Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 87 062313
Google Scholar
[14] Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A-Atom. Mol. Opt. Phy. 88 022339
Google Scholar
[15] Zhao Y J, Zhang Y C, Huang Y D, Xu B J, Yu S, Guo H 2018 J. Phys. B-At. Mol. Opt. Phy. 52 015501
[16] 郑异, 黄鹏, 彭进业, 曾贵华 2019 信息通信技术与政策 45 43
Google Scholar
Zheng Y, Huang P, Peng J Y, Zeng G H 2019 Inf. Commun. Technol. Policy 45 43
Google Scholar
[17] Liao Q, Huang L, Fei Z Y, Fu X Q 2025 Adv. Quantum Technol. 8 2400505 doi: 10.1002/qute.202400505
[18] Kunz-Jacques S, Jouguet P 2015 Phys. Rev. A 91 022307
Google Scholar
[19] Mao Y Y, Huang W T, Zhong H, Wang Y J, Qin H, Guo Y, Huang D 2020 New J. Phys. 22 083073
Google Scholar
[20] Liao Q, Liu H J, Gong Y P, Wang Z, Peng Q Q, Guo Y 2022 Opt. Express 30 3876
Google Scholar
[21] Qi B, Lougovski P, Pooser R, Grice W, Bobrek M 2015 Phys. Rev. X 5 041009
[22] Wang T, Huang P, Zhou Y M, Liu W Q, Ma H X, Wang S Y, Zeng G H 2018 Opt. Express 26 2794
Google Scholar
[23] Wang H, Li Y, Pi Y D, Pan Y, Shao Y, Ma L, Zhang Y C, Yang J, Zhang T, Huang W, Xu B J 2022 Commun. Phys. 5 162
Google Scholar
[24] Marie A, Alléaume R 2017 Phys. Rev. A 95 012316
Google Scholar
[25] Wang H, Pi Y D, Huang W, Li Y, Shao Y, Yang J, Liu J L, Zhang C L, Zhang Y C, Xu B J 2020 Opt. Express 28 32882
Google Scholar
[26] Zhang Y C, Bian Y M, Li Z Y, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318
Google Scholar
[27] 黄彪, 麻甜甜, 黄永梅, 彭真明 2021 激光与光电子学进展 58 1127001
Huang B, Ma T T, Huang Y M, Peng Z M 2021 Laser Optoelectron. Prog. 58 1127001
[28] Roy S, Petersen I R, Huntington E H 2015 New J. Phys. 17 063020
Google Scholar
[29] 刘旭超, 温佳旭, 李少波, 李华贵, 孙时伦 2023 中国激光 50 1412002
Google Scholar
Liu X C, Wen J X, Li S B, Li H G, Sun S L 2023 Chin. J. Lasers 50 1412002
Google Scholar
[30] Shen T, Wang X Y, Chen Z Y, Tian H P, Yu S, Guo H 2023 IEEE Photonics J. 15 7600109
[31] Ren S J, Kumar R, Wonfor A, Tang X K, Penty R, White I 2019 JOSA B 36 B7
Google Scholar
[32] 黄彪, 黄永梅, 彭真明 2019 光学学报 39 1127001
Google Scholar
Huang B, Huang Y M, Peng Z M 2019 Acta Opt. Sin. 39 1127001
Google Scholar
[33] Roy S, Rehman O U, Petersen I R, Huntington E H 2014 European Control Conference Strasbourg, France, June 24—26, 2014 pp896—901
[34] Wang T, Huang P, Wang S Y, Zeng G H 2019 Opt. Express 27 26689
Google Scholar
[35] Hajomer A A, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474
Google Scholar
[36] Su Y, Guo Y, Huang D 2019 Phys. Lett. A 383 2394
Google Scholar
[37] Huang B, Huang Y M, Peng Z M 2020 Opt. Express 28 28727
Google Scholar
[38] Zhong H, Ye W, Zuo Z Y, Huang D, Guo Y 2022 Opt. Express 30 5981
Google Scholar
[39] Diamanti E, Leverrier A 2015 Entropy 17 6072
Google Scholar
[40] Inoue T, Namiki S 2014 Opt. Express 22 15376
Google Scholar
[41] Huang B, Huang Y M, Peng Z M 2019 Opt. Express 27 20621
Google Scholar
[42] Shao Y, Pan Y, Wang H, Pi Y D, Li Y, Ma L, Zhang Y C, Huang W, Xu B J 2022 Entropy 24 992
Google Scholar
[43] Shao Y, Wang H, Pi Y D, Huang W, Li Y, Liu J L, Yang J, Zhang Y C, Xu B J 2021 Phys. Rev. A 104 032608
Google Scholar
[44] Kish S P, Villaseñor E, Malaney R, Mudge K A, Grant K J 2021 IEEE International Conference on Communications Montreal, Quebec, June 14-18, 2021 pp1-6
[45] Shao Y, Li Y, Wang H, Pan Y, Pi Y D, Zhang Y C, Huang W, Xu B J 2022 Phys. Rev. A 105 032601
Google Scholar
[46] Wang T, Huang P, Zhou Y M, Liu W Q, Zeng G H 2018 Phys. Rev. A 97 012310
Google Scholar
[47] Huang P, Lin D K, Huang D, Zeng, G H 2015 Int. J. Theor. Phys. 54 2613-2622
Google Scholar
[48] Jouguet P, Kunz-Jacques S, Diamanti E, Leverrier A 2012 Phys. Rev. A-Atom. Mol. Opt. Phy. 86 032309
Google Scholar
[49] Huang D, Huang P, Lin D K, Zeng G H 2016 Sci. Rep. 6 19201
Google Scholar
[50] Chin H M, Jain N, Zibar D, Andersen U L, Gehring T 2021 Npj Quantum Inf. 7 20
Google Scholar
[51] Sun Y H, Chen Z Y, Wang X Y, Yu S, Guo H 2025 Phys. Rev. Appl. 23 014056
Google Scholar
[52] Oruganti A N, Derkach I, Filip R, Usenko V C 2025 Quantum Sci. Technol. 10 025023
Google Scholar
[53] Liu Y M, Jiang X Q, Dai J S, Hai H, Huang P 2025 Quantum Sci. Technol. 10 025043
Google Scholar
[54] Liao Q, Fei Z Y, Huang L, Fu X Q 2025 Commun. Phys. 8 138
Google Scholar
[55] Ren S J, Yang S, Wonfor A, White I, Penty R 2021 Sci. Rep. 11 9454
Google Scholar
[56] Soh D B, Brif C, Coles P J, Lütkenhaus N, Camacho R M, Urayama J, Sarovar M 2015 Phys. Rev. X 5 041010
[57] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A-Atom. Mol. Opt. Phy. 76 042305
Google Scholar
[58] Rui X, He H W, Sun F C, Zhao K 2013 IEEE Trans. Veh. Technol. 62 108
Google Scholar
[59] Liao Q, Fei Z Y, Liu J Y, Huang A Q, Huang L, Wang Y J 2025 Chaos Soliton. Fract. 196 116331
Google Scholar
计量
- 文章访问数: 330
- PDF下载量: 7
- 被引次数: 0