搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于正交乘积态的多方量子秘密共享协议

陈云 李璇冰 李帅

引用本文:
Citation:

基于正交乘积态的多方量子秘密共享协议

陈云, 李璇冰, 李帅

Multi-party Quantum Secret Sharing Protocol Based on Orthogonal Product States

CHEN Yun, LI Xuanbing, LI Shuai
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 量子秘密共享是一种通过使用量子力学的基本原理,实现在多个参与者之间安全分配和重建秘密信息的密码学协议.本文提出了一种可验证的多方量子秘密共享协议,该协议中存在一个具有验证能力的秘密分发者和多个接收方.在协议执行过程中,秘密分发者会通过设定的编码规则将欲共享的信息用对应的正交乘积态表示,并将量子态进行分割发送给各个接收方,只有各接收方共同合作才能最终恢复初始秘密信息.同时,考虑到在协议过程中可能存在参与者人数变化的情况,加入了人员动态变化操作.通过对协议的安全性分析,证明了该协议可以抵抗常见的内部和外部攻击.我们希望该思想能够对量子秘密共享的进一步研究产生积极的影响.
    Quantum secret sharing (QSS) is a cryptographic protocol that realizes secure distribution and reconstruction of secret information among multiple participants by leveraging fundamental principles of quantum mechanics. Most existing protocols rely on entangled states (such as Bell and GHZ states), but in practical applications, entangled state preparation is constrained by short quantum coherence time, low state fidelity, etc., making it difficult to implement entangled resource-dependent QSS protocols. This paper proposes a novel practical and verifiable multi-party QSS protocol based on orthogonal product states, which are easier to prepare than entangled states. In the protocol preparation stage, the secret distributor first converts pre-shared classical secret information into corresponding orthogonal product states according to encoding rules, and pre-shares a communication key with participants via quantum key distribution (QKD) to hide initial quantum sequence information through subsequent particle transformation operations. After preparing orthogonal product states, the distributor reorganizes particles by position—extracting particles at the same position from each state to form new sequences, scrambling their order—then applies Hadamard transformations with the pre-shared key, inserts decoy particles, and sends sequences to participants. Upon receipt, participants conduct eavesdropping detection, use the same key for inverse transformations, retain one particle from each sequence, and pass remaining particles sequentially until the last participant receives a complete set, triggering state verification with the distributor as arbiter. If verified, particles are returned to the first participant for a return stage with similar procedures. Only after both transmission and return stage verifications pass will the distributor reveal initial particle positions, allowing participants to collaboratively reconstruct the secret.In the protocol, the secret distributor acts as an arbitrator to verify with participants at periodic nodes (the end of the transmission stage and the end of the return stage) to determine whether the particle state information is error-free during transmission. If the verification fails at either stage, the protocol will be terminated immediately. Meanwhile, considering the possible change in the number of participants during the execution of the protocol, a dynamic scheme for personnel changes is designed to ensure the flexibility of the protocol. Through the analysis of possible internal and external attacks, it is proven that our protocol can safely resist the existing common attack methods. Using Qiskit simulation experiments, we have successfully modeled the core quantum procedures of the protocol. The experimental results provide significant computational validation for the theoretical feasibility of the protocol.
  • [1]

    Hellman M, Diffie W 1976 IEEE Trans. Inf. Theory 22644

    [2]

    Fujisaki E, Okamoto T 1999 Annual international cryptology conference Santa Barbara, California, USA, August 15-19, 1999 p537

    [3]

    Bellare M, Desai A, Jokipii E, Rogaway P 1997 Proceedings 38th Annual Symposium on Foundations of Computer Science Miami Beach, FL, USA, October 20-22, 1997 p394

    [4]

    Feistel H 1973 Sci. Amer. 22815

    [5]

    Shor P W 1999 SIAM Rev. 41303

    [6]

    Grover L K 1996 Proceedings of the twenty-eighth annual ACM symposium on Theory of computing Philadelphia, Pennsylvania, May 22-24,1996 p212

    [7]

    Bennett C H, Brassard G 1984 Proc. Workshop on the theory and application of cryptographic techniques Santa Barbara, California, USA, August 19-22, 1984 p475

    [8]

    Feng F Y, Zhang Q 2007 Acta Phys. Sin. 041924(in Chinese) [冯发勇, 张强2007物理学报041924]

    [9]

    Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J, Pan J W 2004 Nature 43054

    [10]

    Wang T Y, Wen Q Y 2011 Chin. Phys. B 20040307

    [11]

    Jiang S X, Zhao B, Liang X Z 2021 Chin. Phys. B 30060303

    [12]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68042317

    [13]

    Zhao N, Jiang Y H, Zhou X T 2022 Acta Phys. Sin. 7136(in Chinese) [赵宁, 江英华, 周贤韬2022物理学报7136]

    [14]

    Deng F G, Zhou H Y, Long G L 2006 J. Phys. A: Math. Gen. 3914089

    [15]

    Sun Y, Du J Z, Qin S J, Wen Q Y, Zhu F C 2008 Acta Phys. Sin. 084689(in Chinese) [孙莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣2008物理学报084689]

    [16]

    Dai Y W, Qin H Y 2015 Chinese Phys. Lett. 32100301

    [17]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 591829

    [18]

    Karlsson A, Koashi M, Imoto N 1999 Phys. Rev. A 59162

    [19]

    Xiao L, Lu Long G, Deng F G, Pan J W 2004 Phys. Rev. A 69052307

    [20]

    Yang Y, Wen Q, Zhu F 2007 Sci. China Ser. G-Phys. Mech. Astron. 50331

    [21]

    Wang T Y, Wen Q Y, Chen X B, Guo F Z, Zhu F C 2008 Opt. Commun. 2816130

    [22]

    Wang C, Zhang Y 2009 Chin. Phys. B 183238

    [23]

    Jia H Y, Wen Q Y, Gao F, Qin S J, Guo F Z 2012 Phys. Lett. A 3761035

    [24]

    Hsu J L, Chong S K, Hwang T, Tsai C W 2013 Quantum Inf. Process. 12331

    [25]

    Du Y T, Bao W S 2018 Chin. Phys. B 27080304

    [26]

    Yang C W, Tsai C W 2020 Quantum Inf. Process. 191

    [27]

    Hu W, Zhou R G, Li X, Fan P, Tan C 2021 Quantum Inf. Process. 201

    [28]

    Tian Y, Wang J, Bian G, Chang J, Li J 2024 Adv. Quantum Technol. 72400116

    [29]

    Lin J, Chen C C, Huang C Y 2024 Physica A 638129615

    [30]

    Yu S, Oh C H 2015 arXiv:1502.01274[quant-ph]

    [31]

    Guo G P, Li C F, Shi B S, Li J, Guo G C 2001 Phys. Rev. A 64042301

    [32]

    Jiang D H, Wang J, Liang X Q, Xu G B, Qi H F 2020 Int. J. Theor. Phys. 59436

    [33]

    Jiang D H, Hu Q Z, Liang X Q, Xu G B 2020 Int. J. Theor. Phys. 591442

    [34]

    Walgate J, Hardy L 2002 Phys. Rev. Lett. 89147901

    [35]

    Xu G B, Wen Q Y, Qin S J, Yang Y H, Gao F 2016 Phys. Rev. A 93032341

    [36]

    Feng Y, Shi Y 2009 IEEE Trans. Inf. Theory 552799

    [37]

    Deng F G, Li X H, Zhou H Y, Zhang Z J 2005 Phys. Rev. A 72044302

    [38]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74054302

    [39]

    Cabello A 2000 Phys. Rev. Lett. 855635

  • [1] 廖骎, 费焯迎, 王一军. 基于卡尔曼滤波的本地本振连续变量量子秘密共享. 物理学报, doi: 10.7498/aps.74.20250227
    [2] 赖红, 万林春. 基于矩阵乘积压缩态的动态可扩展秘密共享方案. 物理学报, doi: 10.7498/aps.73.20240191
    [3] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, doi: 10.7498/aps.73.20230138
    [4] 关富荣, 李成乾, 邓敏艺. 动作电位动态变化对螺旋波演化行为的影响. 物理学报, doi: 10.7498/aps.71.20220021
    [5] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, doi: 10.7498/aps.70.20201981
    [6] 王秀娟, 李生好. 基于U(1)对称的无限矩阵乘积态张量网络算法提取Luttinger液体参数K . 物理学报, doi: 10.7498/aps.68.20190379
    [7] 林书庆, 江宁, 王超, 胡少华, 李桂兰, 薛琛鹏, 刘雨倩, 邱昆. 基于动态混沌映射的三维加密正交频分复用无源光网络. 物理学报, doi: 10.7498/aps.67.20171246
    [8] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发. 物理学报, doi: 10.7498/aps.65.080301
    [9] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享. 物理学报, doi: 10.7498/aps.65.160301
    [10] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案. 物理学报, doi: 10.7498/aps.62.230302
    [11] 韦克金, 马海强, 汪龙. 一种基于双偏振分束器的量子秘密共享方案. 物理学报, doi: 10.7498/aps.62.104205
    [12] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, doi: 10.7498/aps.60.100301
    [13] 肖海林, 欧阳缮, 谢武. 量子Turbo乘积码. 物理学报, doi: 10.7498/aps.60.020301
    [14] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, doi: 10.7498/aps.59.287
    [15] 黄喜, 张新亮, 董建绩, 黄德修. 半导体光放大器超快折射率变化动态特性的研究. 物理学报, doi: 10.7498/aps.58.3185
    [16] 刘玉玲, 满忠晓, 夏云杰. 用非最大纠缠信道对任意二粒子纠缠态的量子秘密分享. 物理学报, doi: 10.7498/aps.57.2680
    [17] 孙 莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣. 具有双向认证功能的量子秘密共享方案. 物理学报, doi: 10.7498/aps.57.4689
    [18] 查新未. 量子隐形传送态的正交完备基展开与算符变换. 物理学报, doi: 10.7498/aps.56.1875
    [19] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享. 物理学报, doi: 10.7498/aps.55.3255
    [20] 曾贵华, 诸鸿文. 基于非正交态的量子密钥验证方案. 物理学报, doi: 10.7498/aps.51.727
计量
  • 文章访问数:  13
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-08

/

返回文章
返回