搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋自旋-轨道耦合三分量玻色-爱因斯坦凝聚体的基态

李吉 王寰宇

引用本文:
Citation:

螺旋自旋-轨道耦合三分量玻色-爱因斯坦凝聚体的基态

李吉, 王寰宇

Ground state of three-component Bose-Einstein condensate with helicoidal spin-orbit coupling

Li Ji, Wang Huan-Yu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 研究了螺旋自旋-轨道耦合三分量玻色-爱因斯坦凝聚体(BEC)的基态结构.结果表明,螺旋自旋-轨道耦合可诱导铁磁BEC发生相分离.通过系统数值计算得到了不同螺旋自旋-轨道耦合强度和规范势时的相图,给出了铁磁BEC发生相分离和相混合的临界条件.同样研究了螺旋自旋-轨道耦合和规范势对反铁磁BEC的影响,结果显示反铁磁BEC仅表现为相混合.调节螺旋自旋-轨道耦合强度或规范势,可以控制反铁磁BEC中条纹孤子与平面波孤子之间的相互转换.此外,也讨论了粒子数密度最大值与条纹孤子的波峰数随螺旋自旋-轨道耦合强度或规范势的变化关系.
    The spinor Bose-Einstein condensate (BEC) provides an ideal platform to observe and manipulate topological structures, which arise from the spin degrees of freedom and the superfluid nature of the gas. Artificial helicoidal spin-orbit coupling (SOC) in the spinor BEC, owing to the spatially varying gauge potential and the more flexible adjustability, provides possibly an unprecedented opportunity to search for novel quantum states. The previous studies of the BEC with helicoidal SOC are mainly focused on the two-component case. However, there are few reports on the studies of helicoidal SOC in three-component BEC. Especially considering one-dimensional three-component BEC, it remains an open question whether the helicoidal SOC can produce previously unknown types of topological excitations and phase diagrams. In this work, by solving quasi one-dimensional Gross-Pitaevskii equations, we study the ground state structure of one-dimensional helicoidal spin-orbit coupled three-component BEC. The numerical results show that, the helicoidal SOC can induce a phase separation among the components in ferromagnetic BEC. The phase diagram as a function of the helicoidal SOC strength and the gauge potential is obtained through systematic numerical calculations, which shows critical condition for occurring phase separation and for occurring phase miscibility in ferromagnetic BEC. Meanwhile, we also study the influences of the helicoidal SOC and the gauge potential on the antiferromagnetic BEC ground state. The numerical results show that the helicoidal SOC favors miscibility in antiferromagnetic BEC. When the helicoidal SOC strength or gauge potential increases, the ground state of antiferromagnetic BEC exhibits a stripe soliton structure. Adjusting the strength of helicoidal SOC or gauge potential can control the transitions between a plane-wave soliton and a stripe soliton. In addition, we show the changes of the particle number density maximum and the number of peaks of stripe solitons for tuning the helicoidal SOC strength or gauge potential. Our results show that helicoidal spin-orbit coupled BEC not only provide a controlled platform to investigate the exotic topological structures, but also are crucial for the transitions among different ground states. This work paves the way for future explorations of topological defect and the corresponding dynamical stability in quantum systems subjected to the helicoidal SOC.
  • [1]

    Ho T L 1998 Phys. Rev. Lett. 81742

    [2]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 851191

    [3]

    Mizushima T, Machida K, Kita T 2002 Phys. Rev. A 66053610

    [4]

    Martikainen J P, Collin A, Suominen K A 2002 Phys. Rev. A 66053604

    [5]

    Mizushima T, Kobayashi N, Machida K 2004 Phys. Rev. A 70043613

    [6]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72033611

    [7]

    Ji A C, Liu W M, Song J L, Zhou F 2008 Phys. Rev. Lett. 101010402

    [8]

    Seo S W, Kang S J, Kwon W J, Shin Y 2015 Phys. Rev. Lett. 115015301

    [9]

    Seo S W,Kwon W J, Kang S J, Shin Y 2016 Phys. Rev. Lett. 116185301

    [10]

    Orlova N V, Kuopanportti P, Milošević M V 2016 Phys. Rev. A 94023617

    [11]

    Kim K, Hur J, Huh S J, Choi S, Choi J Y 2021 Phys. Rev. Lett. 127043401

    [12]

    Li S X, Saito H 2024 Phys. Rev. Res. 6 L042049

    [13]

    Ros A R, Katsimiga G C, Mistakidis S I, Mossman S, Biondini G, Schmelcher P, Engels, P, Kevrekidis P G 2024 Phys. Rev. Lett. 132033402

    [14]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505657

    [15]

    Ray M W, Ruokokoski E, Tiurev K, Möttönen M, Hall D S 2015 Science 348544

    [16]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 47183

    [17]

    Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S, Pan J W 2014 Nat. Phys. 10314

    [18]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S, Liu X J, Pan J W 2016 Science 35483

    [19]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12540

    [20]

    Anderson B M, Juzeliúnas G, Galitski V M,Spielman I B 2012 Phys. Rev. Lett. 108235301

    [21]

    Mithun T, Fritsch A R, Koutsokostas G N, Frantzeskakis D J, Spielman I B, Kevrekidis P G 2024 Phys. Rev. A 109023328

    [22]

    Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B, Zhang X F 2019 Acta Phys. Sin. 68080301(in Chinese) [文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐2019物理学报68080301]

    [23]

    Gautam S, Adhikari S K 2014 Phys. Rev. A 90043619

    [24]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105160403

    [25]

    Liu C F, Liu W M 2012 Phys. Rev. A 86033602

    [26]

    Li J, Liu B, Bai J, Wang H Y, He T C 2020 Acta Phys. Sin. 69140301(in Chinese) [李吉, 刘斌, 白晶, 王寰宇, 何天琛2019物理学报69140301]

    [27]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107270401

    [28]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108010402

    [29]

    Li J, Liu W M 2018 Acta Phys. Sin. 67110302(in Chinese) [李吉, 刘伍明2018物理学报67110302]

    [30]

    Han W, Juzeliūnas G, Zhang W, Liu W M 2015 Phys. Rev. A 91013607

    [31]

    Li J, Yu Y M, Zhuang L, Liu W M 2017 Phys. Rev. A 95043633

    [32]

    Li J, Zhang X F, Liu W M 2018 Annals of Physics 39687

    [33]

    Kartashov Y V, Konotop V V 2017 Phys. Rev. Lett. 118190401

    [34]

    Yang Y X, Gao P, Wu Z Y, Zhao L C, Yang Z Y 2021 Annals of Physics 431168562

    [35]

    Yang Y X, Gao P, Zhao L C, Yang Z Y 2022 Front. Phys. 1732503

    [36]

    Li X X, Cheng R J, Ma J L, Zhang A X, Xue J K 2021 Phys. Rev. E 104034214

    [37]

    Fang P P, Lin J 2024 Phys. Rev. E 109064219

    [38]

    Kartashov Y V, Sherman E Y, Malomed B A, Konotop V V 2020 New J. Phys. 22103014

    [39]

    Li X X, Cheng R J, Ma J L, Zhang A X, Xue J K 2019 Phys. Rev. E 100032220

    [40]

    Otlaadisa P, Tabi C B, Kofané T C 2021 Phys. Rev. E 103052206

    [41]

    Fang P P, He J T, Asgari R, Gao X L, Lin J 2023 Eur. Phys. J. Plus 138482

    [42]

    Chen Y X 2023 Optik - International Journal for Light and Electron Optics 276170685

    [43]

    Zhang D C, Yang S J 2024 Physica B:Condensed Matter 674415528

    [44]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496196

    [45]

    Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114125301

    [46]

    Luo X, Wu L, Chen J, Guan Q, Gao K, Xu Z F, You L, Wang R 2016 Sci. Rep. 618983

    [47]

    Bao W Z, Chern I L, Lim F Y 2006 J. Comput. Phys. 2006219836

    [48]

    Chiquillo E 2018 Phys. Rev. A 97013614

    [49]

    Tononi A, Wang Y M, Salasnich L 2019 Phys. Rev. A 99063618

    [50]

    Matuszewski M, Alexander T J, Kivshar Y S 2009 Phys. Rev. A 80023602

    [51]

    Zhao L C, Luo X W, Zhang C W 2020 Phys. Rev. A 101023621

    [52]

    Saboo A, Halder S, Das S, Majumder S 2024 Phys. Rev. A 110033325

    [53]

    Zhang R F, Li L 2020 Journal of Quantum Optics 2633(in Chinese) [张瑞芳, 李禄2020量子光学学报2633]

    [54]

    Petrov D S 2015 Phys. Rev. Lett. 115155302

    [55]

    Petrov D S, Astrakharchik G E 2016 Phys. Rev. Lett. 117100401

  • [1] 汪长超, 聂青苗, 石亮, 陈乃波, 胡来归, 鄢波. 混合沉积有机分子区域选择性生长的动力学蒙特卡罗模拟研究. 物理学报, doi: 10.7498/aps.73.20231779
    [2] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离. 物理学报, doi: 10.7498/aps.73.20230963
    [3] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象. 物理学报, doi: 10.7498/aps.72.20230792
    [4] 刘博阳, 宋文涛, 刘争晖, 孙晓娟, 王开明, 王亚坤, 张春玉, 陈科蓓, 徐耿钊, 徐科, 黎大兵. AlGaN表面相分离的同位微区荧光光谱和高空间分辨表面电势表征. 物理学报, doi: 10.7498/aps.69.20200099
    [5] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, doi: 10.7498/aps.68.20181891
    [6] 段华, 李剑锋, 张红东. 二维情况下两组分带电囊泡形变耦合相分离的理论模拟研究. 物理学报, doi: 10.7498/aps.67.20171740
    [7] 纪丹丹, 张劭光. 三区域膜泡相分离模式之间转变的研究. 物理学报, doi: 10.7498/aps.67.20180828
    [8] 杨少鹏, 李娜, 李光, 史江波, 李晓苇, 傅广生. 混合溶剂对P3HT:PCBM基太阳能电池的影响. 物理学报, doi: 10.7498/aps.62.014702
    [9] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究. 物理学报, doi: 10.7498/aps.61.196401
    [10] 刘宁, 严国清, 毛强, 王桂英, 郭焕银. La0.3Ca0.7Mn1-xVxO3体系的有序相和再入型自旋玻璃行为研究. 物理学报, doi: 10.7498/aps.59.5759
    [11] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离. 物理学报, doi: 10.7498/aps.59.6569
    [12] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, doi: 10.7498/aps.58.5604
    [13] 梁宣文, 李粮生, 侯兆国, 吕 震, 杨 雷, 孙 刚, 史庆藩. 垂直振动作用下二元混合颗粒分层的动态循环反转. 物理学报, doi: 10.7498/aps.57.2300
    [14] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, doi: 10.7498/aps.57.7157
    [15] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象. 物理学报, doi: 10.7498/aps.57.4660
    [16] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, doi: 10.7498/aps.56.2353
    [17] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究. 物理学报, doi: 10.7498/aps.55.3136
    [18] 张华力, 刘 卫, 李栋才, 吴修胜, 陈初升. La2NiO4+δ体系相分离现象的低频内耗研究. 物理学报, doi: 10.7498/aps.53.3834
    [19] 邝 华, 孔令江, 刘慕仁. 考虑延迟概率因素对混合车辆敏感驾驶交通流模型的研究. 物理学报, doi: 10.7498/aps.53.4138
    [20] 冯文强, 诸跃进. 外噪声场对二元混合物相分离的驱动作用. 物理学报, doi: 10.7498/aps.53.3690
计量
  • 文章访问数:  11
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-08

/

返回文章
返回