搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

调幅分解及形核对相分离作用机理研究

任群 王楠 张莉 王建元 郑亚萍 姚文静

引用本文:
Citation:

调幅分解及形核对相分离作用机理研究

任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静

The effects of spinodal decomposition and nucleation on phase separation

Ren Qun, Wang Nan, Zhang Li, Wang Jian-Yuan, Zheng Ya-Ping, Yao Wen-Jing
PDF
导出引用
  • 以SCN-30wt%H2O, SCN-50 wt%H2O和SCN-80 wt%H2O三组透明体系, 在恒温场下实现了形核和调幅分解两种过程; 在此基础上, 施加温度梯度, 研究了第二相液滴的迁移运动规律. 结果表明, 相分离在临界成分体系以调幅分解方式进行, 在另外两种体系中以形核长大方式进行; 调幅分解与形核过程相比, 反应进行得更快, 液滴长大到同一尺寸所需时间仅为形核所需时间的1/3—1/2. 且临界成分体系有更大的不混溶间隙, 所以第二相液滴具有更多迁移时间, 揭示了偏晶体系相分离过程中在临界成分处易获得壳-核组织的内在机理. 在单向温度场中, 测量了不同半径的液滴迁移速率, 并且与理论Marangoni迁移速率值作比较, 发现液滴迁移速率和Marangoni理论迁移速率符合较好. 说明了在较好地抑制自然对流条件下Marangoni迁移对于相分离过程起主要作用.
    Spinodal decomposition and nucleation process are realized by using three transparent solutions: SCN-30 wt%H2O, SCN-50 wt%H2O, and SCN-80 wt%H2O, and the migration characteristics of minor phase droplets (MPDs) was investigated when uni-direction temperature field is applied. It is find that spinodal decomposition takes place in SCN-50 wt%H2O system and nucleation processes occur in SCN-30 wt%H2O and SCN-50 wt%H2O systems. The period during which the minor droplets of the same size in spinodal decomposition are formed is 1/3—1/2 of that in nucleation process. Moreover, the temperature interval in the system with critical composition is larger than those in other systems, therefore, the minor phase droplet formed in spinodal decomposition is longer than that in nucleation process. Under uni-direction temperature field conditions, the migration velocity of MPDs in SCN-80 wt%H2O system is measured experimentally. It is revealed that the experimental results agree well with the calculated Marangoni velocity, indicating that the Marangoni migration plays a key role in the motion of MPDs.
    • 基金项目: 国家自然科学基金(批准号: 50971104)和西北工业大学研究生创业种子基金(批准号: Z2011008)资助的课题.
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant No. 50971104), and the graduate starting seed fund of Northwestern Polytechnical University (Grant No. Z2011008).
    [1]

    Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 539

    [2]

    Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 688

    [3]

    Siggia E D 1979 Phys. Rev. A 20 595

    [4]

    Aarts D G A L, Schmidt M, Lekkerkerker H N W 2004 Science 304 847

    [5]

    Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (Domb C, Lebowitz J L ed.) (London: Academic Press) p269

    [6]

    Bhat S, Tuinier R, Schurtenberger P 2006 J. Phys. Condens. Matter 18 L339

    [7]

    Bates F S, Wiltzius P, 1989 J. Chem. Phys. 91 3258

    [8]

    Bailey A E, Poon W C K, Christianson R J, Schofield A B, Gasser U, Prasad V, Manley S, Segre P N, Cipelletti L, Meyer W V, Doherty M P, Sankaran S, Jankovsky A L, Shiley W L, Bowen J P, Eggers J C, Kurta C, Lorik T, Jr, Pusey P N, Weitz D A 2007 Phys. Rev. Lett. 99 205701

    [9]

    Tanaka H 1995 Phys. Rev. E 51 1313

    [10]

    Binder K 1987 Rep. Prog. Phys. 50 783

    [11]

    Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K 2002 Science 297 990

    [12]

    Wang C P, Liu X J, Kainuma R, Takaku Y, Ohnuma I, Ishida K 2004 Metall. Mater. Trans. A 35 1243

    [13]

    Zhao J Z 2006 Script. Mater. 54 247

    [14]

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353 (in Chinese) [翟薇, 王楠, 魏炳波 2007 物理学报 56 2353]

    [15]

    Marangoni C 1871 Ann. Phys. Chem. 143 337

    [16]

    George Hansen, Shan Liu, Shu-Zu Lu 2002 Journal of Crystal Growth 234 731

    [17]

    Jackson K A 1958 Liquid Metals and Solidification (Cleveland: American Society for Metals) p174

    [18]

    Becker R 1938Ann. Phys. 32 128

    [19]

    Young N O, Goldstein J S, Block M J 1959 J. Fluid Mech. 6 350

    [20]

    Schaefer R J, Glicksman M E 1975 Phil. Mag. 32 725

  • [1]

    Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 539

    [2]

    Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 688

    [3]

    Siggia E D 1979 Phys. Rev. A 20 595

    [4]

    Aarts D G A L, Schmidt M, Lekkerkerker H N W 2004 Science 304 847

    [5]

    Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (Domb C, Lebowitz J L ed.) (London: Academic Press) p269

    [6]

    Bhat S, Tuinier R, Schurtenberger P 2006 J. Phys. Condens. Matter 18 L339

    [7]

    Bates F S, Wiltzius P, 1989 J. Chem. Phys. 91 3258

    [8]

    Bailey A E, Poon W C K, Christianson R J, Schofield A B, Gasser U, Prasad V, Manley S, Segre P N, Cipelletti L, Meyer W V, Doherty M P, Sankaran S, Jankovsky A L, Shiley W L, Bowen J P, Eggers J C, Kurta C, Lorik T, Jr, Pusey P N, Weitz D A 2007 Phys. Rev. Lett. 99 205701

    [9]

    Tanaka H 1995 Phys. Rev. E 51 1313

    [10]

    Binder K 1987 Rep. Prog. Phys. 50 783

    [11]

    Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K 2002 Science 297 990

    [12]

    Wang C P, Liu X J, Kainuma R, Takaku Y, Ohnuma I, Ishida K 2004 Metall. Mater. Trans. A 35 1243

    [13]

    Zhao J Z 2006 Script. Mater. 54 247

    [14]

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353 (in Chinese) [翟薇, 王楠, 魏炳波 2007 物理学报 56 2353]

    [15]

    Marangoni C 1871 Ann. Phys. Chem. 143 337

    [16]

    George Hansen, Shan Liu, Shu-Zu Lu 2002 Journal of Crystal Growth 234 731

    [17]

    Jackson K A 1958 Liquid Metals and Solidification (Cleveland: American Society for Metals) p174

    [18]

    Becker R 1938Ann. Phys. 32 128

    [19]

    Young N O, Goldstein J S, Block M J 1959 J. Fluid Mech. 6 350

    [20]

    Schaefer R J, Glicksman M E 1975 Phil. Mag. 32 725

  • [1] 张伟光, 张凯奋, 夏立东, 黄鑫, 周晓松, 彭述明, 施立群. 氘氚冰籽晶的形核行为. 物理学报, 2022, 71(2): 025203. doi: 10.7498/aps.71.20211018
    [2] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [3] 张伟光, 张凯奋, 夏立东, 黄鑫, 周晓松, 彭述明, 施立群. 氘氚冰籽晶形核行为研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211018
    [4] 刘博阳, 宋文涛, 刘争晖, 孙晓娟, 王开明, 王亚坤, 张春玉, 陈科蓓, 徐耿钊, 徐科, 黎大兵. AlGaN表面相分离的同位微区荧光光谱和高空间分辨表面电势表征. 物理学报, 2020, 69(12): 127302. doi: 10.7498/aps.69.20200099
    [5] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] 纪丹丹, 张劭光. 三区域膜泡相分离模式之间转变的研究. 物理学报, 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [7] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [8] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟. 物理学报, 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [9] 张琪, 王锦程, 张亚丛, 杨根仓. 多晶凝固及后续调幅分解过程的晶体相场法模拟. 物理学报, 2011, 60(8): 088104. doi: 10.7498/aps.60.088104
    [10] 王强. Bi0.5Ca0.5Mn1-xCoxO3体系中的电荷有序和相分离. 物理学报, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [11] 李美丽, 付兴烨, 孙宏宁, 赵洪安, 李丛, 段永平, 闫元, 孙民华. 高压作用下相分离液体玻璃转变的分子动力学研究. 物理学报, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [12] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [13] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象. 物理学报, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [14] 张华伟, 李言祥. 金属熔体中气泡形核的理论分析. 物理学报, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [15] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [16] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究. 物理学报, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [17] 黄 文, 曾慧中, 张 鹰, 蒋书文, 魏贤华, 李言荣. 不同晶化工艺对非晶PZT纳米薄膜形核取向生长机理的影响. 物理学报, 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
    [18] 张华力, 刘 卫, 李栋才, 吴修胜, 陈初升. La2NiO4+δ体系相分离现象的低频内耗研究. 物理学报, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [19] 冯文强, 诸跃进. 外噪声场对二元混合物相分离的驱动作用. 物理学报, 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
    [20] 王国梁, 梁开明, 刘 伟, 周 锋. 掺金玻璃在电场热处理中的形核过程. 物理学报, 2004, 53(11): 3966-3970. doi: 10.7498/aps.53.3966
计量
  • 文章访问数:  7144
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-01
  • 修回日期:  2012-04-01

调幅分解及形核对相分离作用机理研究

  • 1. 西北工业大学理学院空间应用物理与化学教育部重点实验室, 西安 710072
    基金项目: 国家自然科学基金(批准号: 50971104)和西北工业大学研究生创业种子基金(批准号: Z2011008)资助的课题.

摘要: 以SCN-30wt%H2O, SCN-50 wt%H2O和SCN-80 wt%H2O三组透明体系, 在恒温场下实现了形核和调幅分解两种过程; 在此基础上, 施加温度梯度, 研究了第二相液滴的迁移运动规律. 结果表明, 相分离在临界成分体系以调幅分解方式进行, 在另外两种体系中以形核长大方式进行; 调幅分解与形核过程相比, 反应进行得更快, 液滴长大到同一尺寸所需时间仅为形核所需时间的1/3—1/2. 且临界成分体系有更大的不混溶间隙, 所以第二相液滴具有更多迁移时间, 揭示了偏晶体系相分离过程中在临界成分处易获得壳-核组织的内在机理. 在单向温度场中, 测量了不同半径的液滴迁移速率, 并且与理论Marangoni迁移速率值作比较, 发现液滴迁移速率和Marangoni理论迁移速率符合较好. 说明了在较好地抑制自然对流条件下Marangoni迁移对于相分离过程起主要作用.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回