-
连续变量量子隐形传态在实际的量子通信中起着至关重要的作用. 然而, 实际环境的噪声与损耗会导致量子纠缠的退化, 极大地影响系统的传输性能, 尤其是降低系统的传输距离, 阻碍其实际应用. 本文提出了无噪线性放大的连续变量量子隐形传态方案, 利用无噪线性放大器对退化的纠缠源进行放大, 从而补偿光纤损耗信道对纠缠源的衰减影响, 提升系统的性能. 本文详细分析了不同损耗信道和纠缠源情况下, 无噪线性放大器的增益系数选取范围以及不同增益对方案性能的影响. 仿真结果表明, 本文提出的方案相比于原方案, 在保真度和传输距离方面都有较大的提升. 该研究结果为长距离连续变量量子隐形传态的实际应用提供了一种切实有效的方法.Continuous variable quantum teleportation (CVQT) plays an important role in practical quantum communication. However, the noise and loss in the actual environment will lead to the degradation of entanglement, which has an effect on the performance of the system in terms of the transmission distance and hence hinders its implementations. In this paper, we suggest an approach to improving the performance of the CVQT system with an embedded noiseless linear amplifier (NLA). By using the NLA, one can amplify the degenerated entangled source to compensate for the attenuation of the fiber. Then we consider the influences of the available gains of the NLA on the performance of the proposed scheme under different lossy channels and entangled sources. The simulation results show that the performance is improved in fidelity and transmission distance, which may provide a feasible and effective method of putting the long-distance CVQT into practical application .
[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar
[3] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 230501Google Scholar
[4] Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869Google Scholar
[5] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330Google Scholar
[6] Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar
[7] Marcikic I, De Riedmatten H, Tittel W, Zbinden H, Gisin N 2003 Nature 421 509Google Scholar
[8] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185Google Scholar
[9] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70Google Scholar
[10] Vaidman L 1994 Phys. Rev. A 49 1473Google Scholar
[11] Ralph T C, Lam P K 1998 Phys. Rev. Lett. 81 5668Google Scholar
[12] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar
[13] Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T, Lam P K 2003 Phys. Rev. A 67 032302Google Scholar
[14] Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar
[15] Takei N, Aoki T, Koike S, Yoshino K I, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeoka M, Ban M, Furusawa A 2005 Phys. Rev. A 72 042304Google Scholar
[16] Takei N, Yonezawa H, Aoki T, Furusawa A 2005 Phys. Rev. Lett. 94 220502Google Scholar
[17] Dell’Anno F, De Siena S, Albano L, Illuminati F 2007 Phys. Rev. A 76 022301Google Scholar
[18] Dell’Anno F, De Siena S, Illuminati F 2010 Phys. Rev. A 81 012333Google Scholar
[19] He G Q, Zhang J T, Zhu J, Zeng G H 2011 Phys. Rev. A 84 034305Google Scholar
[20] Hu L Y, Liao Z Y, Ma S L, Zubairy M S 2016 Phys. Rev. A 93 033807Google Scholar
[21] Hofmann K, Semenov A A, Vogel W, Bohmann M 2019 Phys. Scr. 94 125104Google Scholar
[22] Zuo Z Y, Wang Y J, Liao Q, Guo Y 2021 Phys. Rev. A 104 022615Google Scholar
[23] Villaseñor E, He M J, Wang Z Q, Malaney R, Win M Z 2021 IEEE Trans. Quantum Eng. 2 4102118Google Scholar
[24] Liu S H, Lou Y B, Jing J T 2020 Nat. Commun. 11 3875
[25] Chen X, Ou Z Y 2020 Phys. Rev. A 102 032407Google Scholar
[26] Asjad M, Qasymeh M, Eleuch H 2021 Phys. Rev. Appl. 16 034046Google Scholar
[27] Fedorov K G, Renger M, Pogorzalek S, Di Candia R, Chen Q M, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F 2021 Sci. Adv. 7 eabk0891Google Scholar
[28] Zhao H, Feng J X, Sun J K, Li Y J, Zhang K S 2022 Opt. Express 30 3770Google Scholar
[29] Braunstein S L, Fuchs C A, Kimble H J 2000 J. Mod. Opt. 47 267Google Scholar
[30] Fiurášek J 2002 Phys. Rev. A 66 012304Google Scholar
[31] Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P, Tualle-Brouri R 2012 Phys. Rev. A 86 012327Google Scholar
[32] Bai D B, Huang P, Ma H X, Wang T, Zeng G H 2017 Entropy 19 546Google Scholar
[33] Zhang Y C, Li Z Y, Weedbrook C, Marshall K, Pirandola S, Yu S, Guo H 2015 Entropy 17 4547Google Scholar
[34] Bohmann M, Semenov A A, Sperling J, Vogel W 2001 Phys. Rev. A 94 010302
[35] Braunstein S L, Fuchs C A, Kimble H J, van Loock P 2001 Phys. Rev. A 64 022321
-
图 1 无噪线性放大CVQT方案示意图. 纠缠源EPR态由第三方Charlie制备, 模A0和B0分别经过光纤损耗信道传输至Alice和Bob端, Alice和Bob利用无噪线性放大器对接收模进行放大. LO, 本振光; BS, 分束器; g, 无噪线性放大器增益系数
Fig. 1. Schematic of the NLA-based CVQT scheme. The entangled source EPR state is prepared by the third party Charlie. The modes A0 and B0 are transmitted to Alice and Bob through the fiber lossy channel. At the receiver , Alice and Bob use noiseless linear amplifiers for performance improvement. LO, local oscillator; BS, beam splitter; g, gain of NLA.
图 3 单边损耗信道情况下保真度随传输距离的变化关系 (a) EPR态参数
$ \lambda =0.5 $ , 对应NLA增益系数$ g\in \left\{2.3, 2.0, 1.7\right\} $ ; (b) EPR态参数$ \lambda =0.7 $ , 对应NLA增益系数$ g\in \left\{1.5, 1.3, 1.1\right\} $ Fig. 3. The fidelity versus the transmission distance in single lossy channel case: (a) The EPR parameter
$ \lambda =0.5 $ , the gain of NLA$ g\in \left\{2.3, 2.0, 1.7\right\} $ ; (b) the EPR parameter$ \lambda =0.7 $ , the gain of NLA$ g\in \left\{1.5, 1.3, 1.1\right\} $ .图 4 对称损耗信道情况下保真度随传输距离的变化关系 (a) EPR态参数
$ \lambda =0.5 $ , 对应NLA增益系数$ g\in \left\{1.8, 1.5, 1.2\right\} $ ; (b) EPR态参数$ \lambda =0.7 $ , 对应NLA增益系数$ g\in \left\{1.4, 1.3, 1.2\right\} $ .Fig. 4. The fidelity versus the transmission distance in symmetrical lossy channel case: (a) The EPR parameter
$ \lambda =0.5 $ , the gain of NLA$ g\in \left\{1.8, 1.5, 1.2\right\} $ ; (b) the EPR parameter$ \lambda =0.7 $ , the gain of NLA$ g\in \left\{1.4, 1.3, 1.2\right\} $ .图 5 对称损耗信道情况下输入态与输出态的特征函数分布 (a) 输入态特征函数; (b) NLA方案输出态特征函数; (c) 原始方案输出态特征函数; (d) 输入态与输出态的特征函数关于X-P平面投影
Fig. 5. Characteristic functions of input state and output state in symmetrical lossy channel case: (a) Characteristic function of input state; (b) characteristic function of output state with NLA; (c) characteristic function of output state without NLA; (d) projection of characteristic functions of input state and output state on X-P plane.
-
[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar
[3] Hu X M, Zhang C, Liu B H, Cai Y, Ye X J, Guo Y, Xing W B, Huang C X, Huang Y F, Li C F, Guo G C 2020 Phys. Rev. Lett. 125 230501Google Scholar
[4] Braunstein S L, Kimble H J 1998 Phys. Rev. Lett. 80 869Google Scholar
[5] Lee N, Benichi H, Takeno Y, Takeda S, Webb J, Huntington E, Furusawa A 2011 Science 332 330Google Scholar
[6] Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar
[7] Marcikic I, De Riedmatten H, Tittel W, Zbinden H, Gisin N 2003 Nature 421 509Google Scholar
[8] Yin J, Ren J G, Lu H, Cao Y, Yong H L, Wu Y P, Liu C, Liao S K, Zhou F, Jiang Y, Cai X D, Xu P, Pan G S, Jia J J, Huang Y M, Yin H, Wang J Y, Chen Y A, Peng C Z, Pan J W 2012 Nature 488 185Google Scholar
[9] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L, Yang K X, Han X, Yao Y Q, Li J, Wu H Y, Wan S, Liu L, Liu D Q, Kuang Y W, He Z P, Shang P, Guo C, Zheng R H, Tian K, Zhu Z C, Liu N L, Lu C Y, Shu R, Chen Y A, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 70Google Scholar
[10] Vaidman L 1994 Phys. Rev. A 49 1473Google Scholar
[11] Ralph T C, Lam P K 1998 Phys. Rev. Lett. 81 5668Google Scholar
[12] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar
[13] Bowen W P, Treps N, Buchler B C, Schnabel R, Ralph T C, Bachor H A, Symul T, Lam P K 2003 Phys. Rev. A 67 032302Google Scholar
[14] Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar
[15] Takei N, Aoki T, Koike S, Yoshino K I, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeoka M, Ban M, Furusawa A 2005 Phys. Rev. A 72 042304Google Scholar
[16] Takei N, Yonezawa H, Aoki T, Furusawa A 2005 Phys. Rev. Lett. 94 220502Google Scholar
[17] Dell’Anno F, De Siena S, Albano L, Illuminati F 2007 Phys. Rev. A 76 022301Google Scholar
[18] Dell’Anno F, De Siena S, Illuminati F 2010 Phys. Rev. A 81 012333Google Scholar
[19] He G Q, Zhang J T, Zhu J, Zeng G H 2011 Phys. Rev. A 84 034305Google Scholar
[20] Hu L Y, Liao Z Y, Ma S L, Zubairy M S 2016 Phys. Rev. A 93 033807Google Scholar
[21] Hofmann K, Semenov A A, Vogel W, Bohmann M 2019 Phys. Scr. 94 125104Google Scholar
[22] Zuo Z Y, Wang Y J, Liao Q, Guo Y 2021 Phys. Rev. A 104 022615Google Scholar
[23] Villaseñor E, He M J, Wang Z Q, Malaney R, Win M Z 2021 IEEE Trans. Quantum Eng. 2 4102118Google Scholar
[24] Liu S H, Lou Y B, Jing J T 2020 Nat. Commun. 11 3875
[25] Chen X, Ou Z Y 2020 Phys. Rev. A 102 032407Google Scholar
[26] Asjad M, Qasymeh M, Eleuch H 2021 Phys. Rev. Appl. 16 034046Google Scholar
[27] Fedorov K G, Renger M, Pogorzalek S, Di Candia R, Chen Q M, Nojiri Y, Inomata K, Nakamura Y, Partanen M, Marx A, Gross R, Deppe F 2021 Sci. Adv. 7 eabk0891Google Scholar
[28] Zhao H, Feng J X, Sun J K, Li Y J, Zhang K S 2022 Opt. Express 30 3770Google Scholar
[29] Braunstein S L, Fuchs C A, Kimble H J 2000 J. Mod. Opt. 47 267Google Scholar
[30] Fiurášek J 2002 Phys. Rev. A 66 012304Google Scholar
[31] Blandino R, Leverrier A, Barbieri M, Etesse J, Grangier P, Tualle-Brouri R 2012 Phys. Rev. A 86 012327Google Scholar
[32] Bai D B, Huang P, Ma H X, Wang T, Zeng G H 2017 Entropy 19 546Google Scholar
[33] Zhang Y C, Li Z Y, Weedbrook C, Marshall K, Pirandola S, Yu S, Guo H 2015 Entropy 17 4547Google Scholar
[34] Bohmann M, Semenov A A, Sperling J, Vogel W 2001 Phys. Rev. A 94 010302
[35] Braunstein S L, Fuchs C A, Kimble H J, van Loock P 2001 Phys. Rev. A 64 022321
计量
- 文章访问数: 3316
- PDF下载量: 74
- 被引次数: 0