搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于峰值补偿的连续变量量子密钥分发方案

毛宜钰 王一军 郭迎 毛堉昊 黄文体

引用本文:
Citation:

基于峰值补偿的连续变量量子密钥分发方案

毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体

Continuous-variable quantum key distribution based on peak-compensation

Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti
PDF
HTML
导出引用
  • 在实际的连续变量量子密钥分发系统中, 接收端模数转换器的有限采样带宽会导致脉冲峰值采样结果不准确, 从而使参数估计过程产生误差, 给窃听者留下了安全性漏洞. 针对这个问题, 本文提出一种基于峰值补偿的连续变量量子密钥分发方案, 利用高斯脉冲的基本特性来估计每个脉冲的最大采样值与脉冲峰值之间的偏差, 从而对该采样值进行峰值补偿, 使系统得到正确的采样结果. 本文详细分析了有限采样带宽对系统安全性的影响, 阐述了峰值补偿的具体步骤, 并讨论了峰值补偿前后系统估计的过噪声差别, 及其在高斯集体攻击下的安全性. 仿真实验结果表明, 该方案能准确找到每个脉冲的峰值, 纠正系统的参数估计误差. 与不采用峰值补偿的方案相比, 本方案消除了系统重复频率对密钥比特率的限制, 具有更长的安全传输距离和更高的密钥比特率.
    Continuous-variable quantum key distribution (CVQKD) is an important application of quantum technology, which enables long-distance communicating parties to establish a string of unconditionally secure keys in an insecure environment. However, in a practical CVQKD system, the finite sampling bandwidth of the analog-to-digital converter (ADC) at the receiver may create inaccurate sampling results, leading to errors in parameter estimation process and leaving a security loophole for eavesdroppers. In order to eliminate the finite sampling bandwidth effect, we propose a peak-compensation-based CVQKD scheme, which estimates the discrepancy between the maximum sampling value and the peak value of each pulse based on the characteristics of Gaussian pulse. The maximum sampling values are compensated by the estimated discrepancy, so that the legitimate parties can obtain correct sampling results. We analyze the influence of the finite sampling bandwidth on the security of the system, expounding the specific steps of peak-compensation, comparing the estimated excess noise before and after peak-compensation, and discussing the security of the system under Gaussian collective attacks. Simulation results show that this scheme can greatly improve the accuracy of pulse peak sampling and remove the finite sampling bandwidth effect. Moreover, the channel parameters estimated by the communicating parties are also corrected by using the compensated values. Compared with the scheme without peak-compensation, this scheme eliminates the limitation of the system repetition to the secret key bit rate, and has longer secure transmission distance and higher secret key bit rate. In addition, compared with other methods of solving the finite sampling bandwidth effect, the proposed scheme can be directly implemented in data processing stage after sampling without any additional devices, and thus increasing no complexity of the system.
      通信作者: 黄文体, huangwenti@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871407, 61872390, 61801522)资助的课题
      Corresponding author: Huang Wen-Ti, huangwenti@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871407, 61872390, 61801522)
    [1]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [2]

    Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar

    [3]

    Wang B X, Mao Y Q, Shen L, Zhang L, Lan X B, Ge D W, Gao Y Y, Li J H, Tang Y L, Tang S B, Zhang J, Chen T Y, Pan J W 2020 Opt. Express 28 12558Google Scholar

    [4]

    Zhang Y, Li Z, Chen Z, Weedbrook C, Zhao Y, Wang X, Huang Y, Xu C, Zhang X, Wang Z, Li M, Zhang X, Zheng Z, Chu B, Gao X, Meng N, Cai W, Wang Z, Wang G, Yu S, Guo H 2019 Quantum Sci. and Technol. 4 035006Google Scholar

    [5]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [6]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [7]

    Laudenbach F, Pacher C, Fung C-H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [8]

    Ralph T C 1999 Phys. Rev. A 61 010303Google Scholar

    [9]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [10]

    Grosshans F, Cerf N J, Wenger J, Tualle-Brouri R, Grangier P 2003 Quantum Inf. Comput. 3 535

    [11]

    Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504Google Scholar

    [12]

    Pirandola S, Mancini S, Lloyd S, Braunstein S L 2008 Nat. Phys. 4 726Google Scholar

    [13]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [14]

    Weedbrook C, Pirandola S, Ralph T C 2012 Phys. Rev. A 86 022318Google Scholar

    [15]

    Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337Google Scholar

    [16]

    Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905Google Scholar

    [17]

    Navascués M, Grosshans F, Acín A 2006 Phys. Rev. Lett. 97 190502Google Scholar

    [18]

    García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar

    [19]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [20]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [21]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [22]

    Jain N, Anisimova E, Khan I, Makarov V, Marquardt C, Leuchs G 2014 New J. Phys. 16 123030Google Scholar

    [23]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar

    [24]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar

    [25]

    Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C, Han Z F 2013 Phys. Rev. A 87 062329Google Scholar

    [26]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar

    [27]

    Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304Google Scholar

    [28]

    Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar

    [29]

    Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar

    [30]

    Zheng Y, Huang P, Huang A, Peng J, Zeng G 2019 Opt. Express 27 27369Google Scholar

    [31]

    Liu W, Wang X, Wang N, Du S, Li Y 2017 Phys. Rev. A 96

    [32]

    Wang C, Huang P, Huang D, Lin D, Zeng G 2016 Phys. Rev. A 93 022315Google Scholar

    [33]

    Li H, Wang C, Huang P, Huang D, Wang T, Zeng G 2016 Opt. Express 24 20481Google Scholar

    [34]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [35]

    Wang C, Huang D, Huang P, Lin D, Peng J, Zeng G 2015 Sci. Rep. 5 14607Google Scholar

    [36]

    Qi B, Huang L L, Qian L, Lo H K 2007 Phys. Rev. A 76 052323Google Scholar

    [37]

    Huang P, Huang J, Wang T, Li H, Huang D, Zeng G 2017 Phys. Rev. A 95 052302Google Scholar

  • 图 1  CVQKD系统的接收端设备结构图. PBS为偏振分束器, BS为光分束器, PM为相位调制器, PIN为光电二极管, ADC为模数转换器

    Fig. 1.  Structure of receiver’s apparatus of a CVQKD system. PBS, polarization beam splitter; BS, beam splitter; PM, phase modulator; PIN, positive intrinsic-negative; ADC, analog-to-digital converter.

    图 2  零差探测器输出脉冲的时域波形, 箭头表示采样位置. ${t_{\rm{s}}}$为采样间隔, ${U_{\rm{p}}}$为脉冲的峰值, ${U_{\rm{m}}}$为最大测量值, ${T_0}$为脉冲持续时间

    Fig. 2.  Time-domain shape of an output pulse from the balanced homodyne detector. ${t_{\rm{s}}}$, sampling interval; ${U_{\rm{p}}}$, peak value of the pulse; ${U_{\rm{m}}}$, maximal measurement value; ${T_0}$, duration of each pulse.

    图 3  (a)有限采样带宽影响下的高斯脉冲时域采样情况; (b)峰值补偿后的采样值. 其中蓝色线表示脉冲时域波形, 红色圆点代表采样值

    Fig. 3.  (a) Sampling positions of Gaussian pulses effected by finite-sampling bandwidth; (b) sampling values after peak compensation. The blue line represents the time-domain shape of the pulses, and the red dots represent the sampled values.

    图 4  不同信道过噪声情况下的估计过噪声随系统重复率的变化. 图中PC表示峰值补偿(peak-compensation, PC)

    Fig. 4.  The estimated excess noise as a function of the system repetition rate under different channel excess noise. PC in the figure represents peak-compensation.

    图 5  (a)不同系统重复率下的密钥率随传输距离的变化; (b)不同传输距离下的密钥比特率随系统重复率的变化

    Fig. 5.  (a) The secret key rate as a function of the transmission distance under different system repetition rate; (b) the secret bit rate as a function of the system repetition rate under different transmission distance.

  • [1]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [2]

    Fang X T, Zeng P, Liu H, Zou M, Wu W J, Tang Y L, Sheng Y J, Xiang Y, Zhang W, Li H, Wang Z, You L, Li M J, Chen H, Chen Y A, Zhang Q, Peng C Z, Ma X, Chen T Y, Pan J W 2020 Nat. Photonics 14 422Google Scholar

    [3]

    Wang B X, Mao Y Q, Shen L, Zhang L, Lan X B, Ge D W, Gao Y Y, Li J H, Tang Y L, Tang S B, Zhang J, Chen T Y, Pan J W 2020 Opt. Express 28 12558Google Scholar

    [4]

    Zhang Y, Li Z, Chen Z, Weedbrook C, Zhao Y, Wang X, Huang Y, Xu C, Zhang X, Wang Z, Li M, Zhang X, Zheng Z, Chu B, Gao X, Meng N, Cai W, Wang Z, Wang G, Yu S, Guo H 2019 Quantum Sci. and Technol. 4 035006Google Scholar

    [5]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [6]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [7]

    Laudenbach F, Pacher C, Fung C-H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [8]

    Ralph T C 1999 Phys. Rev. A 61 010303Google Scholar

    [9]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [10]

    Grosshans F, Cerf N J, Wenger J, Tualle-Brouri R, Grangier P 2003 Quantum Inf. Comput. 3 535

    [11]

    Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504Google Scholar

    [12]

    Pirandola S, Mancini S, Lloyd S, Braunstein S L 2008 Nat. Phys. 4 726Google Scholar

    [13]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [14]

    Weedbrook C, Pirandola S, Ralph T C 2012 Phys. Rev. A 86 022318Google Scholar

    [15]

    Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337Google Scholar

    [16]

    Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905Google Scholar

    [17]

    Navascués M, Grosshans F, Acín A 2006 Phys. Rev. Lett. 97 190502Google Scholar

    [18]

    García-Patrón R, Cerf N J 2006 Phys. Rev. Lett. 97 190503Google Scholar

    [19]

    Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504Google Scholar

    [20]

    Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343Google Scholar

    [21]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [22]

    Jain N, Anisimova E, Khan I, Makarov V, Marquardt C, Leuchs G 2014 New J. Phys. 16 123030Google Scholar

    [23]

    Jouguet P, Kunz-Jacques S, Diamanti E 2013 Phys. Rev. A 87 062313Google Scholar

    [24]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 88 022339Google Scholar

    [25]

    Huang J Z, Weedbrook C, Yin Z Q, Wang S, Li H W, Chen W, Guo G C, Han Z F 2013 Phys. Rev. A 87 062329Google Scholar

    [26]

    Ma X C, Sun S H, Jiang M S, Liang L M 2013 Phys. Rev. A 87 052309Google Scholar

    [27]

    Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304Google Scholar

    [28]

    Qin H, Kumar R, Alléaume R 2016 Phys. Rev. A 94 012325Google Scholar

    [29]

    Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312Google Scholar

    [30]

    Zheng Y, Huang P, Huang A, Peng J, Zeng G 2019 Opt. Express 27 27369Google Scholar

    [31]

    Liu W, Wang X, Wang N, Du S, Li Y 2017 Phys. Rev. A 96

    [32]

    Wang C, Huang P, Huang D, Lin D, Zeng G 2016 Phys. Rev. A 93 022315Google Scholar

    [33]

    Li H, Wang C, Huang P, Huang D, Wang T, Zeng G 2016 Opt. Express 24 20481Google Scholar

    [34]

    Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511Google Scholar

    [35]

    Wang C, Huang D, Huang P, Lin D, Peng J, Zeng G 2015 Sci. Rep. 5 14607Google Scholar

    [36]

    Qi B, Huang L L, Qian L, Lo H K 2007 Phys. Rev. A 76 052323Google Scholar

    [37]

    Huang P, Huang J, Wang T, Li H, Huang D, Zeng G 2017 Phys. Rev. A 95 052302Google Scholar

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241094
    [3] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [5] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [6] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [7] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [8] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案. 物理学报, 2021, 70(2): 020301. doi: 10.7498/aps.70.20200855
    [9] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [10] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [11] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [12] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [13] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [14] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [15] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [16] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [17] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [18] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [19] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [20] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
计量
  • 文章访问数:  4724
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-01-13
  • 上网日期:  2021-05-27
  • 刊出日期:  2021-06-05

/

返回文章
返回