搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温化学非平衡与表面微孔隙效应对边界层稳定性影响

温景浩 李晨辉 涂国华 万兵兵 段茂昌 张锐

引用本文:
Citation:

高温化学非平衡与表面微孔隙效应对边界层稳定性影响

温景浩, 李晨辉, 涂国华, 万兵兵, 段茂昌, 张锐

Impact of high-temperature chemical non-equilibrium and surface micropore effect on boundary layer stability

WEN Jinghao, LI Chenhui, TU Guohua, WAN Bingbing, DUAN Maochang, ZHANG Rui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 层流-湍流的转捩问题是飞行器设计研制面临的重要气动难题。当飞行马赫数较高时,飞行器表面同时存在高温气体热化学反应与微孔隙效应,此时边界层失稳问题更加复杂,其机理认识尚不清楚。本文建立了同时考虑高温化学非平衡效应和表面微孔隙效应的线性稳定性分析方法,并针对高空H=25km、马赫数10、15和20的飞行工况,对比分析了化学非平衡效应、微孔隙效应以及两种效应共存时对流动稳定性的影响。研究发现,化学非平衡效应能够促进边界层模态失稳,微孔隙效应能够抑制第二模态失稳,前者作用强于后者,导致两者共存时整体上促进第二模态失稳。化学非平衡效应能够降低孔隙效应抑制第二模态对应的频率范围,造成在局部低频范围内化学非平衡效应可以增强微孔隙效应的抑制效果,而在高频范围内减弱其抑制效果,导致孔隙效应N值降低量整体上减小。此外,两种效应共存时马赫数变化对微孔隙效应抑制第二模态的能力影响不大。
    The transition from laminar to turbulent flow is one of the main aerodynamic challenges in aircraft design and development. When the flight Mach number is sufficiently high, the aircraft's surface experiences micropore effects and high-temperature gas thermochemical reactions. At the moment, boundary layer instability is a more complex problem, and its mechanism is still unclear. In this study, a linear stability analysis method is developed that considers both high-temperature chemical non-equilibrium processes and surface micropore effects. For flight conditions at high altitude (H=25 km) with Mach numbers 10, 15, and 20, the effects of micropore effects, chemical non-equilibrium effects, and their coexistence on flow stability are contrasted and investigated. It turns out that the chemical non-equilibrium effect can encourage the boundary layer's mode instability, while the micropore effect can restrain the second mode instability. The coexistence of the two tends to encourage the instability of the second mode because the former is heavier than the latter. The chemical non-equilibrium effect can reduce the frequency range corresponding to the second mode of pore effect inhibition, which results in the chemical non-equilibrium effect enhancing the inhibition effect of the micropore effect in the local low-frequency range and weakening its inhibition effect in the high-frequency range. This, in turn, causes a decrease in the corresponding N value variation by pore effect. Furthermore, when both effects are present, the micropore effect's capacity to inhibit the second mode is not significantly impacted by changes in Mach number.
  • [1]

    Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017Acta Aerodyn. Sin. 35 311(in Chinese)[陈坚强,涂国华,张毅锋,徐国亮,袁先旭,陈诚2017空气动力学报35 311]

    [2]

    Currie J G, Dickason A M 1988VA:Defense Technical Information Center

    [3]

    Candler G V 2019Annu. Rev. Fluid Mech 51 379

    [4]

    Bitter N P 2015Ph. D. Dissertation(California Institute of Technology)

    [5]

    Malik M R 1991Phys. Fluids 3 803

    [6]

    Stuckert G, Reed H L 1994AIAA J 32 1384

    [7]

    Hudson M L, Chokani N, Candler G V 1997AIAA J 35 958

    [8]

    Franko K, Maccormack R, Lele S 201040th Fluid Dynamics Conference and Exhibit Chicago, June 28-July 1, 2010

    [9]

    Chen X L, Wang L, Fu S 2021Phys. Fluids 33 034132

    [10]

    Zhao Z Y, Chen X L, Wang L, Fu S 2023Phys. Gases 8 35(in Chinese)[赵洲源,陈贤亮,王亮,符松2023气体物理8 35]

    [11]

    Li C H, Wan B B, Tu G H, Hu W B, Chen J Q, Jiang C W 2024Acta Aerodyn. Sin. 42 12(in Chinese)[李晨辉,万兵兵,涂国华,胡伟波,陈坚强,蒋崇文2024空气动力学报42 12]

    [12]

    Fernando M M, Beyak E S, Pinna F, Reed H L, Brussels B 2019Phys. Fluids 31 044101

    [13]

    Mcbride B J, Zehe M J, Sanford G 2002NASA/TP 211556

    [14]

    Magin T, Degrez G 2005J. Comput. Phys. 198 424

    [15]

    Yos J M 1963Research& Advanced Development Division Avco Corporation Technical Memorandum

    [16]

    Ramshaw J D 1993J. Non-Equilibrium Thermodyn. 18 12

    [17]

    Chapman S, Cowling T G 1952Math. Gaz. 38 323

    [18]

    Blottner F G, Johnson M, Ellis M 1971Sandia Laboratory

    [19]

    Brokaw R S 1965J. Chem. Phys. 42 1140

    [20]

    Gupta R N, Yos J M, Thompson R A 1990NASA Sti/recon Technical Report N

    [21]

    Wan B B, Han Y F, Fan Y, Luo J S 2017J. Aerosp. Power 32 188(in Chinese)[万兵兵,韩宇峰,樊宇,罗纪生2017航空动力学报32 188]

    [22]

    Park C, Jaffe R L, Partridge H 2001J. Thermophys. Heat Transf. 15 76

    [23]

    Park C 1985AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14-17, 198585-0247

    [24]

    PARK C 1993J. Thermophys. Heat Transf. 7 385

    [25]

    Li C H, Wan B B, Chen J Q, Tu G H, Hu W B, Jiang C W 2024Int. J. Heat Mass Transfer 233126018

    [26]

    Al-Jothery H K M, Albarody T M B, Yusoff P S M, Abdullah M A, Hussein A R 2020 IOP Conference Series:Materials Science and Engineering 863012003

    [27]

    Malmuth N, Fedorov A, Shalaev V, Cole J, Khokhlov A, Hites M, Williams D 19982nd AIAA Theoretical Fluid Mechanics Meeting, Albuquerque, New Mexico, June 15-18, 1998

    [28]

    Fedorov A, Malmuth N 2001 AIAA 39 605

    [29]

    Zhao R, Liu T, Wen C Y, Zhu J, Cheng L 2018 AIAA 56 2942

    [30]

    Wartemann V, Heinrich L, Sandham N D 200916th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, October 19-22, 2009 Session:HYTASP-1:Aerodynamics I

    [31]

    Xu J K, Liu J X, Mughal S, Yu P X, Bai J Q 2020Phys. Fluids 32 044105

    [32]

    Wang X Q, Zhong X L 2012Phys. Fluids 24 034105

    [33]

    Rasheed A, Hornung H G, Fedorov A, Malmuth N D 2002 AIAA 40 481

    [34]

    Lukashevich S V, Morozov S O, Shiplyuk A N 2016J. Appl. Mech. Tech. Phys. 57 873

    [35]

    Guo Q L, Tu G H, Chen J Q, Yuan X X, Wan B B 2020J. Aerosp. Power 35 135(in Chinese)[郭启龙,涂国华,陈坚强,袁先旭,万兵兵2020航空动力学报35 135]

    [36]

    Liu Y, Tu G H, Xiang X H, Li X H, Guo Q L, Wan B B 2022Acta Phys. Sin. 71 201(in Chinese)[刘勇,涂国华,向星皓,李晓虎,郭启龙,万兵兵2022物理学报71 201]

    [37]

    Gui Y T, Wang W Z, Zhao R, Zhao J Q, Wu J 2022AIAA 60 4453

    [38]

    Liu X, Zhao R, Wen C Y, Yuan W 2024Acta Mech. 235 1109

    [39]

    Wang X W, Zhong X L 201351st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, January 07-10, 20130827

    [40]

    Wang X W 2018AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 20182088

    [41]

    Uy K C K, Hao J, Zhao R, Wen C Y 2023Aerosp. Sci. Technol. 141 108520

    [42]

    Walter G V, Charles H K, Teichmann T 1966Phys. Today 19 95

    [43]

    Bird R B, Stewart W E, Lightfoot E N 20022nd Wiley international ed.(New York:J. Wiley)

    [44]

    Wilke C R 1950J. Chem. Phys. 18 517

    [45]

    Wan B B, Su C H, Chen J Q 2020AIAA 58 4047

    [46]

    Zhao R, Wen C Y, Tian X D, Long T H, Yuan W 2018Int. J. Heat Mass Transfer 121 986

    [47]

    Brès G A, Inkman M, Colonius T, Fedorov A 2013J. Fluid Mech 726 312

    [48]

    Luedeke H, Sandham N D, Wartemann V 2012AIAA 50 1281

    [49]

    Zhao R, Zhang X X, Wei H G, Wen C Y China Patent CN110135062B[2021-10-29] (in Chinese)[赵瑞,张新昕,魏昊功,温志涌中国专利CN110135062B[2021-10-29] ]

    [50]

    Kline H L, Chang C L, Li F 2018Fluid Dynamics Conference Atlanta, Georgia, June 25-29, 20183699

    [51]

    Fernando M M, Fabio P, Ethan S B, Paolo B, Helen L R 2018AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 20181824

    [52]

    Zhao R, Yan H, Xi K, Wen C Y 2020Aeronaut. Sci. Technol. 31 104(in Chinese)[赵瑞,严昊,席柯,温志涌航空科学技术31 104]

  • [1] 曾瑞童, 易仕和, 陆小革, 赵玉新, 张博, 冈敦殿. 内流可视超声速喷管边界层实验研究. 物理学报, doi: 10.7498/aps.73.20240713
    [2] 陈娟, 胡巍, 陆大全. 三阶非线性效应对边界限制的自聚焦振荡型响应函数系统中二次孤子的影响. 物理学报, doi: 10.7498/aps.71.20220865
    [3] 贺啸秋, 熊永亮, 彭泽瑞, 徐顺. 旋转肥皂泡热对流能量耗散与边界层特性的数值模拟. 物理学报, doi: 10.7498/aps.71.20220693
    [4] 范海龙, 陈明文. 磁场对二元合金凝固过程中糊状层稳定性的影响. 物理学报, doi: 10.7498/aps.70.20201748
    [5] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, doi: 10.7498/aps.70.20210836
    [6] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, doi: 10.7498/aps.68.20190684
    [7] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, doi: 10.7498/aps.68.20190378
    [8] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, doi: 10.7498/aps.66.234701
    [9] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, doi: 10.7498/aps.65.194701
    [10] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析. 物理学报, doi: 10.7498/aps.63.024204
    [11] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, doi: 10.7498/aps.62.044214
    [12] 蔡善勇, 梅磊, 彭虎庆, 陆大全, 胡巍. 非局域非线性介质中多极表面光孤子的解析解及其稳定性分析. 物理学报, doi: 10.7498/aps.61.154211
    [13] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, doi: 10.7498/aps.60.094702
    [14] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题. 物理学报, doi: 10.7498/aps.59.2178
    [15] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, doi: 10.7498/aps.57.7390
    [16] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解. 物理学报, doi: 10.7498/aps.57.1329
    [17] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, doi: 10.7498/aps.55.947
    [18] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, doi: 10.7498/aps.51.1068
    [19] 李睿劬, 李存标. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, doi: 10.7498/aps.51.1743
    [20] 王宏霞, 虞厥邦. 细胞神经网络平衡态的稳定性分析. 物理学报, doi: 10.7498/aps.50.2303
计量
  • 文章访问数:  39
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回