-
层流-湍流的转捩问题是飞行器设计研制面临的重要气动难题. 当飞行马赫数较高时, 飞行器表面同时存在高温气体热化学反应与微孔隙效应, 此时边界层失稳问题更加复杂, 其机理认识尚不清楚. 本文建立了同时考虑高温化学非平衡效应和表面微孔隙效应的线性稳定性分析方法, 并针对高空H = 25 km、马赫数10, 15和20的飞行工况, 对比分析了化学非平衡效应、微孔隙效应以及两种效应共存时对流动稳定性的影响. 研究发现, 化学非平衡效应能够促进边界层模态失稳, 微孔隙效应能够抑制第二模态失稳, 前者作用强于后者, 导致两者共存时整体上促进第二模态失稳. 化学非平衡效应能够降低孔隙效应抑制第二模态对应的频率范围, 造成在局部低频范围内化学非平衡效应可以增强微孔隙效应的抑制效果, 而在高频范围内减弱其抑制效果, 导致孔隙效应N值降低量整体上减小. 此外, 两种效应共存时马赫数变化对微孔隙效应抑制第二模态的能力影响不大.The transition from laminar to turbulent flow is one of the main aerodynamic challenges in aircraft design and development. When the flight Mach number is sufficiently high, the aircraft surface experiences micropore effects and high-temperature gas thermochemical reactions. At present, boundary layer instability has become a more complex problem, and its mechanism is still unclear. In this study, a linear stability analysis method is developed which takes into consideration high-temperature chemical non-equilibrium process and surface micropore effect. For flight conditions at high altitude (H = 25 km) with Mach numbers 10, 15, and 20, the effects of micropore effects, chemical non-equilibrium effects, and their joint effect on flow stability are contrasted and investigated. The results show that the chemical non-equilibrium effect can contribute to the boundary layer's mode instability, while the micropore effect can restrain the second mode instability. The coexistence of the two often contributes to the instability of the second mode, because the former is heavier than the latter. The chemical non-equilibrium effect can reduce the frequency range corresponding to the second mode of pore effect inhibition, which results in the chemical non-equilibrium effect enhancing the inhibition effect of the micropore effect in the local low-frequency range and weakening its inhibition effect in the high-frequency range. This, in turn, causes a decrease in the corresponding N value variation by pore effect. Furthermore, when both effects are present, the micropore effect's capacity to inhibit the second mode is not significantly affected by change in Mach number.
-
Keywords:
- boundary layer /
- stability /
- chemical non-equilibrium /
- micropore effect
-
表 1 不同马赫数对应来流参数
Table 1. Flow characteristics for various Mach numbers.
Ma Te/K ρe/(kg·m–3) Ue/(m·s–1) Re/m–1 10 221.55 0.040085 2983.6 8.26×106 15 221.55 0.040085 4475.4 1.24×107 20 221.55 0.040085 5967.2 1.65×107 表 2 不同截面参数
Table 2. Parameters of different cross-sections.
表 3 不同马赫数下x/Lref=900位置的N值相对变化率
Table 3. Relative change of N-values at x/Lref=900 under different Mach numbers.
Ma (ΔN/Nmax, smooth) CPG (ΔN/Nmax, smooth) CNE 10 26.8% 18.2% 15 22.1% 19.8% 20 27.2% 15.5% -
[1] 陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚 2017 空气动力学报 35 311
Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017 Acta Aerodyn. Sin. 35 311
[2] Currie J G, Dickason A M 1988 VA: Defense Technical Information Center
[3] Candler G V 2019 Annu. Rev. Fluid Mech 51 379
Google Scholar
[4] Bitter N P 2015 Ph. D. Dissertation (Pasadena: California Institute of Technology
[5] Malik M R 1991 Phys. Fluids 3 803
Google Scholar
[6] Stuckert G, Reed H L 1994 AIAA J. 32 1384
Google Scholar
[7] Hudson M L, Chokani N, Candler G V 1997 AIAA J. 35 958
Google Scholar
[8] Franko K, Maccormack R, Lele S 2010 40th Fluid Dynamics Conference and Exhibit Chicago, June 28–July 1, 2010
[9] Chen X L, Wang L, Fu S 2021 Phys. Fluids 33 034132
Google Scholar
[10] 赵洲源, 陈贤亮, 王亮, 符松 2023 气体物理 8 35
Zhao Z Y, Chen X L, Wang L, Fu S 2023 Phys. Gases 8 35
[11] 李晨辉, 万兵兵, 涂国华, 胡伟波, 陈坚强, 蒋崇文 2024 空气动力学报 42 12
Li C H, Wan B B, Tu G H, Hu W B, Chen J Q, Jiang C W 2024 Acta Aerodyn. Sin. 42 12
[12] Fernando M M, Beyak E S, Pinna F, Reed H L, Brussels B 2019 Phys. Fluids 31 044101
Google Scholar
[13] Mcbride B J, Zehe M J, Sanford G 2002 NASA/TP 211556
[14] Magin T, Degrez G 2005 J. Comput. Phys. 198 424
[15] Yos J M 1963 Research & Advanced Development Division Avco Corporation Technical Memorandum
[16] Ramshaw J D 1993 J. Non-Equilibrium Thermodyn. 18 12
[17] Chapman S, Cowling T G 1952 Math. Gaz. 38 323
[18] Blottner F G, Johnson M, Ellis M 1971 Sandia Laboratory
[19] Brokaw R S 1965 J. Chem. Phys. 42 1140
Google Scholar
[20] Gupta R N, Yos J M, Thompson R A 1990 NASA Sti/recon Technical Report N
[21] 万兵兵, 韩宇峰, 樊宇, 罗纪生 2017 航空动力学报 32 188
Wan B B, Han Y F, Fan Y, Luo J S 2017 J. Aerosp. Power 32 188
[22] Park C, Jaffe R L, Partridge H 2001 J. Thermophys. Heat Transfer 15 76
Google Scholar
[23] Park C 1985 AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14-17, 1985 p85-0247
[24] PARK C 1993 J. Thermophys. Heat Transfer 7 385
Google Scholar
[25] Li C H, Wan B B, Chen J Q, Tu G H, Hu W B, Jiang C W 2024 Int. J. Heat Mass Transfer 233 126018
Google Scholar
[26] Al-Jothery H K M, Albarody T M B, Yusoff P S M, Abdullah M A, Hussein A R 2020 IOP Conference Series: Materials Science and Engineering 863 012003
Google Scholar
[27] Malmuth N, Fedorov A, Shalaev V, Cole J, Khokhlov A, Hites M, Williams D 1998 2nd AIAA Theoretical Fluid Mechanics Meeting, Albuquerque, New Mexico, June 15-18, 1998
[28] Fedorov A, Malmuth N 2001 AIAA J. 39 605
Google Scholar
[29] Zhao R, Liu T, Wen C Y, Zhu J, Cheng L 2018 AIAA J. 56 2942
Google Scholar
[30] Wartemann V, Heinrich L, Sandham N D 2009 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, October 19-22, 2009 Session: HYTASP-1: Aerodynamics I
[31] Xu J K, Liu J X, Mughal S, Yu P X, Bai J Q 2020 Phys. Fluids 32 044105
Google Scholar
[32] Wang X Q, Zhong X L 2012 Phys. Fluids 24 034105
Google Scholar
[33] Rasheed A, Hornung H G, Fedorov A, Malmuth N D 2002 AIAA J. 40 481
Google Scholar
[34] Lukashevich S V, Morozov S O, Shiplyuk A N 2016 J. Appl. Mech. Tech. Phys. 57 873
Google Scholar
[35] 郭启龙, 涂国华, 陈坚强, 袁先旭, 万兵兵 2020 航空动力学报 35 135
Guo Q L, Tu G H, Chen J Q, Yuan X X, Wan B B 2020 J. Aerosp. Power 35 135
[36] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵 2022 物理学报 71 1947011
Google Scholar
Liu Y, Tu G H, Xiang X H, Li X H, Guo Q L, Wan B B 2022 Acta Phys. Sin. 71 194701
Google Scholar
[37] Gui Y T, Wang W Z, Zhao R, Zhao J Q, Wu J 2022 AIAA J. 60 4453
Google Scholar
[38] Liu X, Zhao R, Wen C Y, Yuan W 2024 Acta Mech. 235 1109
Google Scholar
[39] Wang X W, Zhong X L 2013 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, January 07-10, 2013 p827
[40] Wang X W 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 2018 2088
[41] Ken C K U, Hao J, Zhao R, Wen C Y 2023 Aerosp. Sci. Technol. 141 108520
[42] Walter G V, Charles H K, Teichmann T 1966 Phys. Today 19 95
[43] Bird R B, Stewart W E, Lightfoot E N 2002 2nd Wiley international ed. (New York: J. Wiley
[44] Wilke C R 1950 J. Chem. Phys. 18 517
Google Scholar
[45] Wan B B, Su C H, Chen J Q 2020 AIAA J. 58 4047
Google Scholar
[46] Zhao R, Wen C Y, Tian X D, Long T H, Yuan W 2018 Int. J. Heat Mass Transfer 121 986
Google Scholar
[47] Brès G A, Inkman M, Colonius T, Fedorov A 2013 J. Fluid Mech 726 312
Google Scholar
[48] Luedeke H, Sandham N D, Wartemann V 2012 AIAA J. 50 1281
Google Scholar
[49] 2021-10-29] [赵瑞, 张新昕, 魏昊功, 温志涌 中国专利 CN110135062B [2021-10-29]
Zhao R, Zhang X X, Wei H G, Wen C Y China Patent CN110135062B
[50] Kline H L , Chang C L , Li F 2018 Fluid Dynamics Conference Atlanta, Georgia, June 25-29, 2018 p3699
[51] Miró M Fernando, Pinna F, Beyak E S, Barbante P, Reed H L 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 2018 1824
[52] 赵瑞, 严昊, 席柯, 温志涌 航空科学技术 31 104
Zhao R, Yan H, Xi K, Wen C Y 2020 Aeronaut. Sci. Technol. 31 104
计量
- 文章访问数: 220
- PDF下载量: 3
- 被引次数: 0