搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温化学非平衡与表面微孔隙效应对边界层稳定性影响

温景浩 李晨辉 涂国华 万兵兵 段茂昌 张锐

引用本文:
Citation:

高温化学非平衡与表面微孔隙效应对边界层稳定性影响

温景浩, 李晨辉, 涂国华, 万兵兵, 段茂昌, 张锐

Influence of high-temperature chemical non-equilibrium and surface micropore effect on boundary layer stability

WEN Jinghao, LI Chenhui, TU Guohua, WAN Bingbing, DUAN Maochang, ZHANG Rui
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 层流-湍流的转捩问题是飞行器设计研制面临的重要气动难题. 当飞行马赫数较高时, 飞行器表面同时存在高温气体热化学反应与微孔隙效应, 此时边界层失稳问题更加复杂, 其机理认识尚不清楚. 本文建立了同时考虑高温化学非平衡效应和表面微孔隙效应的线性稳定性分析方法, 并针对高空H = 25 km、马赫数10, 15和20的飞行工况, 对比分析了化学非平衡效应、微孔隙效应以及两种效应共存时对流动稳定性的影响. 研究发现, 化学非平衡效应能够促进边界层模态失稳, 微孔隙效应能够抑制第二模态失稳, 前者作用强于后者, 导致两者共存时整体上促进第二模态失稳. 化学非平衡效应能够降低孔隙效应抑制第二模态对应的频率范围, 造成在局部低频范围内化学非平衡效应可以增强微孔隙效应的抑制效果, 而在高频范围内减弱其抑制效果, 导致孔隙效应N值降低量整体上减小. 此外, 两种效应共存时马赫数变化对微孔隙效应抑制第二模态的能力影响不大.
    The transition from laminar to turbulent flow is one of the main aerodynamic challenges in aircraft design and development. When the flight Mach number is sufficiently high, the aircraft surface experiences micropore effects and high-temperature gas thermochemical reactions. At present, boundary layer instability has become a more complex problem, and its mechanism is still unclear. In this study, a linear stability analysis method is developed which takes into consideration high-temperature chemical non-equilibrium process and surface micropore effect. For flight conditions at high altitude (H = 25 km) with Mach numbers 10, 15, and 20, the effects of micropore effects, chemical non-equilibrium effects, and their joint effect on flow stability are contrasted and investigated. The results show that the chemical non-equilibrium effect can contribute to the boundary layer's mode instability, while the micropore effect can restrain the second mode instability. The coexistence of the two often contributes to the instability of the second mode, because the former is heavier than the latter. The chemical non-equilibrium effect can reduce the frequency range corresponding to the second mode of pore effect inhibition, which results in the chemical non-equilibrium effect enhancing the inhibition effect of the micropore effect in the local low-frequency range and weakening its inhibition effect in the high-frequency range. This, in turn, causes a decrease in the corresponding N value variation by pore effect. Furthermore, when both effects are present, the micropore effect's capacity to inhibit the second mode is not significantly affected by change in Mach number.
  • 图 1  简单截面示意

    Fig. 1.  Schematic diagram of a simple cross-section.

    图 2  CPG工况流向x/Lref = 600处温度剖面对比

    Fig. 2.  Temperature profile comparison under CPG circumstance at x/Lref = 600.

    图 3  CNE工况流向x/Lref = 600处基本流对比 (a)流向速度; (b)温度; (c)组分浓度

    Fig. 3.  Baisc flow profiles at x/Lref = 600 under CNE circumstance: (a) Streamwise velocity; (b) temperature; (c) species concentration.

    图 4  稳定性分析结果与文献对比 (a)特征函数; (b)模态增长率

    Fig. 4.  Comparison of literature and present results: (a) Eigenfunction; (b) growth rate.

    图 5  网格无关性验证 (a)流向速度; (b)模态增长率

    Fig. 5.  Verification of grid independence: (a) Streamwise velocity; (b) growth rate.

    图 6  CPG下Ma10工况在位置x/Lref = 400模态增长率对比

    Fig. 6.  Comparison of growth rate at position x/Lref = 400 for Ma10 condition under CPG.

    图 7  微槽和圆孔的对比 (a) N值曲线; (b) 模态增长率变化率

    Fig. 7.  Comparison of results between microgrooves and micropores: (a) N-value curves; (b) relative change of growth rate.

    图 8  不同截面参数下在位置x/Lref = 600的模态增长率变化

    Fig. 8.  Changes in growth rate under different cross-sectional parameters at x/Lref = 600.

    图 9  Ma10工况不同气体模型边界层基本流剖面 (a)速度; (b)温度

    Fig. 9.  Basic flow profiles of boundary layer for different gas models under Ma10 condition: (a) Streamwise velocity; (b) temperature.

    图 10  Ma10工况不同气体模型模态增长率和相速度对比 (a) x/Lref = 600; (b)沿流向F = 124 kHz

    Fig. 10.  Comparison of growth rate and phase velocity of different gas models under Ma10: (a) x/Lref = 600; (b) modal frequency F = 124 kHz along the streamwise direction.

    图 11  Ma10工况不同气体模型对比 (a)中性曲线; (b)N值包络

    Fig. 11.  Comparison of different gas model under Ma10: (a) Neutral curve; (b) N-value envelope.

    图 12  不同气体模型光滑和多孔壁增长率及其相对变化率对比 (a) x/Lref = 400; (b) x/Lref = 600; (c) x/Lref = 800

    Fig. 12.  Comparing the growth rates of smooth and porous walls and their relative change for different gas models: (a) x/Lref = 400; (b) x/Lref = 600; (c) x/Lref = 800.

    图 13  光滑和多孔壁在x/Lref = 600处压力特征函数对比

    Fig. 13.  Comparison of the pressure eigenfunctions at x/Lref = 600 for smooth and porous walls.

    图 14  不同气体模型光滑与多孔壁的N值包络线对比

    Fig. 14.  Comparison of N-value envelope for smooth and porous walls of different gas models.

    图 15  CNE工况不同马赫数的模态增长率对比 (a) x/Lref = 600; (b) 沿流向F = 130 kHz

    Fig. 15.  Comparison of growth rates at different Mach numbers under CNE condition: (a) x/Lref = 600; (b) modal frequency F = 130 kHz along the streamwise direction

    图 16  不同马赫数中性曲线对比 (a) CPG; (b) CNE

    Fig. 16.  Comparison of neutral curves at different Mach numbers: (a) CPG; (b) CNE.

    图 17  CNE工况不同马赫数N值包络对比

    Fig. 17.  Comparison of N-value envelopes at different Mach numbers under CNE condition.

    图 18  不同马赫数光滑和多孔壁增长率及相对变化率对比 (a) x/Lref = 400; (b) x/Lref = 600

    Fig. 18.  Comparison of growth rates and relative change of smooth and porous walls at different Mach numbers: (a) x/Lref = 400; (b) x/Lref = 600.

    图 19  不同马赫数下光滑与多孔壁的N值包络

    Fig. 19.  N-value envelopes of smooth and porous walls at different Mach numbers.

    表 1  不同马赫数对应来流参数

    Table 1.  Flow characteristics for various Mach numbers.

    MaTe/Kρe/(kg·m–3)Ue/(m·s–1)Re/m–1
    10221.550.0400852983.68.26×106
    15221.550.0400854475.41.24×107
    20221.550.0400855967.21.65×107
    下载: 导出CSV

    表 2  不同截面参数

    Table 2.  Parameters of different cross-sections.

    Parameters of porous wallH/mmb/mmn
    Porous-1[29]6.7520.9450.66
    Porous-2[47]18.8550.9420.66
    Porous-3[48]2.0000.093750.25
    Porous-4[52]0.3520.2640.53
    下载: 导出CSV

    表 3  不同马赫数下x/Lref=900位置的N值相对变化率

    Table 3.  Relative change of N-values at x/Lref=900 under different Mach numbers.

    MaN/Nmax, smooth) CPGN/Nmax, smooth) CNE
    1026.8%18.2%
    1522.1%19.8%
    2027.2%15.5%
    下载: 导出CSV
  • [1]

    陈坚强, 涂国华, 张毅锋, 徐国亮, 袁先旭, 陈诚 2017 空气动力学报 35 311

    Chen J Q, Tu G H, Zhang Y F, Xu G L, Yuan X X, Chen C 2017 Acta Aerodyn. Sin. 35 311

    [2]

    Currie J G, Dickason A M 1988 VA: Defense Technical Information Center

    [3]

    Candler G V 2019 Annu. Rev. Fluid Mech 51 379Google Scholar

    [4]

    Bitter N P 2015 Ph. D. Dissertation (Pasadena: California Institute of Technology

    [5]

    Malik M R 1991 Phys. Fluids 3 803Google Scholar

    [6]

    Stuckert G, Reed H L 1994 AIAA J. 32 1384Google Scholar

    [7]

    Hudson M L, Chokani N, Candler G V 1997 AIAA J. 35 958Google Scholar

    [8]

    Franko K, Maccormack R, Lele S 2010 40th Fluid Dynamics Conference and Exhibit Chicago, June 28–July 1, 2010

    [9]

    Chen X L, Wang L, Fu S 2021 Phys. Fluids 33 034132Google Scholar

    [10]

    赵洲源, 陈贤亮, 王亮, 符松 2023 气体物理 8 35

    Zhao Z Y, Chen X L, Wang L, Fu S 2023 Phys. Gases 8 35

    [11]

    李晨辉, 万兵兵, 涂国华, 胡伟波, 陈坚强, 蒋崇文 2024 空气动力学报 42 12

    Li C H, Wan B B, Tu G H, Hu W B, Chen J Q, Jiang C W 2024 Acta Aerodyn. Sin. 42 12

    [12]

    Fernando M M, Beyak E S, Pinna F, Reed H L, Brussels B 2019 Phys. Fluids 31 044101Google Scholar

    [13]

    Mcbride B J, Zehe M J, Sanford G 2002 NASA/TP 211556

    [14]

    Magin T, Degrez G 2005 J. Comput. Phys. 198 424

    [15]

    Yos J M 1963 Research & Advanced Development Division Avco Corporation Technical Memorandum

    [16]

    Ramshaw J D 1993 J. Non-Equilibrium Thermodyn. 18 12

    [17]

    Chapman S, Cowling T G 1952 Math. Gaz. 38 323

    [18]

    Blottner F G, Johnson M, Ellis M 1971 Sandia Laboratory

    [19]

    Brokaw R S 1965 J. Chem. Phys. 42 1140Google Scholar

    [20]

    Gupta R N, Yos J M, Thompson R A 1990 NASA Sti/recon Technical Report N

    [21]

    万兵兵, 韩宇峰, 樊宇, 罗纪生 2017 航空动力学报 32 188

    Wan B B, Han Y F, Fan Y, Luo J S 2017 J. Aerosp. Power 32 188

    [22]

    Park C, Jaffe R L, Partridge H 2001 J. Thermophys. Heat Transfer 15 76Google Scholar

    [23]

    Park C 1985 AIAA 23rd Aerospace Sciences Meeting, Reno, Nevada, January 14-17, 1985 p85-0247

    [24]

    PARK C 1993 J. Thermophys. Heat Transfer 7 385Google Scholar

    [25]

    Li C H, Wan B B, Chen J Q, Tu G H, Hu W B, Jiang C W 2024 Int. J. Heat Mass Transfer 233 126018Google Scholar

    [26]

    Al-Jothery H K M, Albarody T M B, Yusoff P S M, Abdullah M A, Hussein A R 2020 IOP Conference Series: Materials Science and Engineering 863 012003Google Scholar

    [27]

    Malmuth N, Fedorov A, Shalaev V, Cole J, Khokhlov A, Hites M, Williams D 1998 2nd AIAA Theoretical Fluid Mechanics Meeting, Albuquerque, New Mexico, June 15-18, 1998

    [28]

    Fedorov A, Malmuth N 2001 AIAA J. 39 605Google Scholar

    [29]

    Zhao R, Liu T, Wen C Y, Zhu J, Cheng L 2018 AIAA J. 56 2942Google Scholar

    [30]

    Wartemann V, Heinrich L, Sandham N D 2009 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, October 19-22, 2009 Session: HYTASP-1: Aerodynamics I

    [31]

    Xu J K, Liu J X, Mughal S, Yu P X, Bai J Q 2020 Phys. Fluids 32 044105Google Scholar

    [32]

    Wang X Q, Zhong X L 2012 Phys. Fluids 24 034105Google Scholar

    [33]

    Rasheed A, Hornung H G, Fedorov A, Malmuth N D 2002 AIAA J. 40 481Google Scholar

    [34]

    Lukashevich S V, Morozov S O, Shiplyuk A N 2016 J. Appl. Mech. Tech. Phys. 57 873Google Scholar

    [35]

    郭启龙, 涂国华, 陈坚强, 袁先旭, 万兵兵 2020 航空动力学报 35 135

    Guo Q L, Tu G H, Chen J Q, Yuan X X, Wan B B 2020 J. Aerosp. Power 35 135

    [36]

    刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵 2022 物理学报 71 1947011Google Scholar

    Liu Y, Tu G H, Xiang X H, Li X H, Guo Q L, Wan B B 2022 Acta Phys. Sin. 71 194701Google Scholar

    [37]

    Gui Y T, Wang W Z, Zhao R, Zhao J Q, Wu J 2022 AIAA J. 60 4453Google Scholar

    [38]

    Liu X, Zhao R, Wen C Y, Yuan W 2024 Acta Mech. 235 1109Google Scholar

    [39]

    Wang X W, Zhong X L 2013 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Grapevine, Texas, January 07-10, 2013 p827

    [40]

    Wang X W 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 2018 2088

    [41]

    Ken C K U, Hao J, Zhao R, Wen C Y 2023 Aerosp. Sci. Technol. 141 108520

    [42]

    Walter G V, Charles H K, Teichmann T 1966 Phys. Today 19 95

    [43]

    Bird R B, Stewart W E, Lightfoot E N 2002 2nd Wiley international ed. (New York: J. Wiley

    [44]

    Wilke C R 1950 J. Chem. Phys. 18 517Google Scholar

    [45]

    Wan B B, Su C H, Chen J Q 2020 AIAA J. 58 4047Google Scholar

    [46]

    Zhao R, Wen C Y, Tian X D, Long T H, Yuan W 2018 Int. J. Heat Mass Transfer 121 986Google Scholar

    [47]

    Brès G A, Inkman M, Colonius T, Fedorov A 2013 J. Fluid Mech 726 312Google Scholar

    [48]

    Luedeke H, Sandham N D, Wartemann V 2012 AIAA J. 50 1281Google Scholar

    [49]

    2021-10-29] [赵瑞, 张新昕, 魏昊功, 温志涌 中国专利 CN110135062B [2021-10-29]

    Zhao R, Zhang X X, Wei H G, Wen C Y China Patent CN110135062B

    [50]

    Kline H L , Chang C L , Li F 2018 Fluid Dynamics Conference Atlanta, Georgia, June 25-29, 2018 p3699

    [51]

    Miró M Fernando, Pinna F, Beyak E S, Barbante P, Reed H L 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 08-12, 2018 1824

    [52]

    赵瑞, 严昊, 席柯, 温志涌 航空科学技术 31 104

    Zhao R, Yan H, Xi K, Wen C Y 2020 Aeronaut. Sci. Technol. 31 104

  • [1] 曾瑞童, 易仕和, 陆小革, 赵玉新, 张博, 冈敦殿. 内流可视超声速喷管边界层实验研究. 物理学报, doi: 10.7498/aps.73.20240713
    [2] 陈娟, 胡巍, 陆大全. 三阶非线性效应对边界限制的自聚焦振荡型响应函数系统中二次孤子的影响. 物理学报, doi: 10.7498/aps.71.20220865
    [3] 贺啸秋, 熊永亮, 彭泽瑞, 徐顺. 旋转肥皂泡热对流能量耗散与边界层特性的数值模拟. 物理学报, doi: 10.7498/aps.71.20220693
    [4] 范海龙, 陈明文. 磁场对二元合金凝固过程中糊状层稳定性的影响. 物理学报, doi: 10.7498/aps.70.20201748
    [5] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, doi: 10.7498/aps.70.20210836
    [6] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, doi: 10.7498/aps.68.20190684
    [7] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, doi: 10.7498/aps.68.20190378
    [8] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, doi: 10.7498/aps.66.234701
    [9] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, doi: 10.7498/aps.65.194701
    [10] 高星辉, 唐冬, 张承云, 郑晖, 陆大全, 胡巍. 非局域表面暗孤子及其稳定性分析. 物理学报, doi: 10.7498/aps.63.024204
    [11] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, doi: 10.7498/aps.62.044214
    [12] 蔡善勇, 梅磊, 彭虎庆, 陆大全, 胡巍. 非局域非线性介质中多极表面光孤子的解析解及其稳定性分析. 物理学报, doi: 10.7498/aps.61.154211
    [13] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, doi: 10.7498/aps.60.094702
    [14] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题. 物理学报, doi: 10.7498/aps.59.2178
    [15] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, doi: 10.7498/aps.57.7390
    [16] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解. 物理学报, doi: 10.7498/aps.57.1329
    [17] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, doi: 10.7498/aps.55.947
    [18] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, doi: 10.7498/aps.51.1068
    [19] 李睿劬, 李存标. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, doi: 10.7498/aps.51.1743
    [20] 王宏霞, 虞厥邦. 细胞神经网络平衡态的稳定性分析. 物理学报, doi: 10.7498/aps.50.2303
计量
  • 文章访问数:  220
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-03
  • 修回日期:  2025-04-06
  • 上网日期:  2025-04-24

/

返回文章
返回