搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无限薄平板边界层前缘感受性过程的数值研究

陆昌根 沈露予

引用本文:
Citation:

无限薄平板边界层前缘感受性过程的数值研究

陆昌根, 沈露予

Numerical study of leading-edge receptivity on the infinite-thin flat-plat boundary layer

Lu Chang-Gen, Shen Lu-Yu
PDF
导出引用
  • 在边界层流中层流向湍流转捩机理的研究一直是人们所关注的重要理论课题之一.感受性阶段是边界层内整个转捩过程中的初始阶段,它在层流向湍流转捩过程中起着关键性的作用.但是,在过去的边界层前缘感受性研究中大多数都是针对外部声波小扰动,很少见到考虑在自由流中普遍存在的自由来流湍流作用下边界层内诱导前缘感受性问题的相关报道.本文采用直接数值模拟的方法,研究自由来流湍流与无限薄平板前缘驻点扰动作用下边界层流中前缘感受性过程的内在机理.数值结果发现,在自由来流湍流与无限薄平板前缘驻点扰动作用下边界层流中能被感受出一组小扰动波,且它们的色散关系、增长率、中性曲线等结果都与流动稳定性中的线性理论获得的理论解相一致,由此可知在边界层内被激发产生的一组小扰动波就是Tollmien-Schlichting波,这也证明自由来流湍流与无限薄平板前缘驻点扰动相互作用是激发边界层流中前缘感受性过程的另一种物理机理;另外,还探讨了自由来流湍流度以及自由来流湍流的运动方向对无限薄平板边界层前缘感受性过程有何影响等.总之,开展边界层前缘感受性过程的深入研究,有益于完善流动稳定性理论,将为层流向湍流转捩过程的预测提供合理的理论依据.
    The laminar-turbulent transition has always been one of the most concerned and significant research topics. Receptivity is the first stage of the laminar-turbulent transition process in the boundary layer, and also plays a key role in the laminar-turbulent transition. However, previous studies for leading-edge receptivity mostly focused on the external sound disturbances, while it is seldom to see the relevant research on the leading-edge receptivity to free-stream turbulence in the boundary layer which is universal in the free stream. In view of this, direct numerical simulation is utilized in this paper to study the leading-edge receptivity to free-stream turbulence exciting the Tollmien-Schlichting (T-S) wave in the boundary layer. The high-order high-resolution compact finite difference schemes based on non-uniform meshes and fast Fourier transform are used in spatial discretization, and the fourth order modified Runge-Kutta scheme is used in temporal discretization to solve Navier-Stokes equations for direct numerical simulation. Perturbation waves with short wavelengths, whose wavelengths are approximately one-third of the disturbance wavelengths of free-stream turbulence, are excited in the boundary layer under the free-stream turbulence; and our numerical results show that the dispersion relations, growth rates and neutral stability curve of the group of the excited perturbation waves with different frequencies are in line with the solutions obtained from the linear stability theory. These obtained numerical results confirm that the group of the excited perturbation waves with different frequencies are a group of T-S waves with different frequencies and the interaction between leading-edge of flat plate and free-stream turbulence to excite unstable waves in the boundary layer is one of the receptivity mechanisms. Furthermore, it is found that the amplitudes of the excited T-S waves in the boundary layer increase linearly with increasing the amplitude of the free-stream turbulence; while the normal wave number and incident angle of free-stream turbulence are approximately 60 and 20, the leading-edge receptivity coefficient KI reaches a maximum; and the values of leading-edge receptivity coefficient KI
      通信作者: 陆昌根, cglu@nuist.edu.cn;shenluyu@nuist.edu.cn ; 沈露予, cglu@nuist.edu.cn;shenluyu@nuist.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11472139,11172143)、南京信息工程大学人才启动基金、江苏高校优势学科建设工程和江苏省海洋环境探测工程技术研究中心资助的课题.
      Corresponding author: Lu Chang-Gen, cglu@nuist.edu.cn;shenluyu@nuist.edu.cn ; Shen Lu-Yu, cglu@nuist.edu.cn;shenluyu@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472139, 11172143), the NUIST Talent Foundation, the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and Marine Environment Detection of Engineering Technology Research Center of Jiangsu Province, China.
    [1]

    Buter T A, Reed H L 1994 Phy. Fluid. 6 3368

    [2]

    Saric W S, Reed H L, Kerschen E J 2002 Annu. Rev. Fluid. Mech. 34 291

    [3]

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702 (in Chinese) [陆昌根, 沈露予2015物理学报64 224702]

    [4]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 349

    [5]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 929

    [6]

    Goldstein M E 1983 J. Fluid. Mech. 127 59

    [7]

    Goldstein M E 1985 J. Fluid. Mech. 154 509

    [8]

    Heinrich R A E, Kerschen E J 1989 Angew. Math. Mech. 69 596

    [9]

    Lin N, Reed H L, Saric W S 1992 Instability, Transition, and Turbulence (New York: Springer) p421

    [10]

    Wanderley J B V, Corke T C 2001 J. Fluid. Mech. 429 1

    [11]

    Fuciarelli D, Reed H, Lyttle I 2000 AIAA J. 38 1159

    [12]

    Kerschen E J, Choudhari M, Heinrich R A 1990 Laminar-Turbulent Transition (Berlin: Springer) p477

    [13]

    Schrader L U, Brandt L, Mavriplis C, Henningson D S 2010 J. Fluid. Mech. 653 245

    [14]

    Shen L Y, Lu C G, Wu W G, Xue S F 2015 Add. Appl. Math. Mech. 7 180

    [15]

    Lu C G, Cao W D, Zhang Y M, Guo J T 2008 P. Nat. Sci. 18 873

    [16]

    Zhang Y, Zaki T, Sherwin S, Wu X 2011 6th AIAA Theortical Fluid Mechanics Conference Hawaii, June 27-30, 2011 p3292

    [17]

    Dietz A J 1998 AIAA J. 361171

  • [1]

    Buter T A, Reed H L 1994 Phy. Fluid. 6 3368

    [2]

    Saric W S, Reed H L, Kerschen E J 2002 Annu. Rev. Fluid. Mech. 34 291

    [3]

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702 (in Chinese) [陆昌根, 沈露予2015物理学报64 224702]

    [4]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 349

    [5]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 929

    [6]

    Goldstein M E 1983 J. Fluid. Mech. 127 59

    [7]

    Goldstein M E 1985 J. Fluid. Mech. 154 509

    [8]

    Heinrich R A E, Kerschen E J 1989 Angew. Math. Mech. 69 596

    [9]

    Lin N, Reed H L, Saric W S 1992 Instability, Transition, and Turbulence (New York: Springer) p421

    [10]

    Wanderley J B V, Corke T C 2001 J. Fluid. Mech. 429 1

    [11]

    Fuciarelli D, Reed H, Lyttle I 2000 AIAA J. 38 1159

    [12]

    Kerschen E J, Choudhari M, Heinrich R A 1990 Laminar-Turbulent Transition (Berlin: Springer) p477

    [13]

    Schrader L U, Brandt L, Mavriplis C, Henningson D S 2010 J. Fluid. Mech. 653 245

    [14]

    Shen L Y, Lu C G, Wu W G, Xue S F 2015 Add. Appl. Math. Mech. 7 180

    [15]

    Lu C G, Cao W D, Zhang Y M, Guo J T 2008 P. Nat. Sci. 18 873

    [16]

    Zhang Y, Zaki T, Sherwin S, Wu X 2011 6th AIAA Theortical Fluid Mechanics Conference Hawaii, June 27-30, 2011 p3292

    [17]

    Dietz A J 1998 AIAA J. 361171

  • [1] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [2] 沈露予, 陆昌根. 前缘曲率变化对平板边界层感受性问题的影响. 物理学报, 2018, 67(18): 184703. doi: 10.7498/aps.67.20180593
    [3] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [4] 沈露予, 陆昌根. 三维边界层内定常横流涡的感受性研究. 物理学报, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [5] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [6] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [7] 陆昌根, 朱晓清, 沈露予. 三维边界层内诱导横流失稳模态的感受性机理. 物理学报, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [8] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [9] 陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究. 物理学报, 2015, 64(22): 224702. doi: 10.7498/aps.64.224702
    [10] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [11] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [12] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [13] 陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春. 翼型绕流的洛伦兹力控制机理. 物理学报, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [14] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [15] 莫嘉琪, 刘树德, 唐荣荣. 一类奇摄动非线性方程Robin问题激波的位置. 物理学报, 2010, 59(7): 4403-4408. doi: 10.7498/aps.59.4403
    [16] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究. 物理学报, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [17] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [18] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
    [19] 李睿劬, 李存标. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [20] 林鸿荪. 片流边界层中气流及热转移. 物理学报, 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
计量
  • 文章访问数:  2949
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-04
  • 修回日期:  2016-07-13
  • 刊出日期:  2016-10-05

无限薄平板边界层前缘感受性过程的数值研究

    基金项目: 国家自然科学基金(批准号:11472139,11172143)、南京信息工程大学人才启动基金、江苏高校优势学科建设工程和江苏省海洋环境探测工程技术研究中心资助的课题.

摘要: 在边界层流中层流向湍流转捩机理的研究一直是人们所关注的重要理论课题之一.感受性阶段是边界层内整个转捩过程中的初始阶段,它在层流向湍流转捩过程中起着关键性的作用.但是,在过去的边界层前缘感受性研究中大多数都是针对外部声波小扰动,很少见到考虑在自由流中普遍存在的自由来流湍流作用下边界层内诱导前缘感受性问题的相关报道.本文采用直接数值模拟的方法,研究自由来流湍流与无限薄平板前缘驻点扰动作用下边界层流中前缘感受性过程的内在机理.数值结果发现,在自由来流湍流与无限薄平板前缘驻点扰动作用下边界层流中能被感受出一组小扰动波,且它们的色散关系、增长率、中性曲线等结果都与流动稳定性中的线性理论获得的理论解相一致,由此可知在边界层内被激发产生的一组小扰动波就是Tollmien-Schlichting波,这也证明自由来流湍流与无限薄平板前缘驻点扰动相互作用是激发边界层流中前缘感受性过程的另一种物理机理;另外,还探讨了自由来流湍流度以及自由来流湍流的运动方向对无限薄平板边界层前缘感受性过程有何影响等.总之,开展边界层前缘感受性过程的深入研究,有益于完善流动稳定性理论,将为层流向湍流转捩过程的预测提供合理的理论依据.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回