搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体黏性及表面张力对气泡运动特性的影响

艾旭鹏 倪宝玉

引用本文:
Citation:

流体黏性及表面张力对气泡运动特性的影响

艾旭鹏, 倪宝玉

Influence of viscosity and surface tension of fluid on the motion of bubbles

Ai Xu-Peng, Ni Bao-Yu
PDF
导出引用
  • 基于气泡边界层理论,引入黏性修正,采用边界积分法,考虑黏性效应和表面张力在单气泡以及双气泡耦合作用过程中的影响.首先将建立的数值模型与Rayleigh-Plesset的解析解进行对比,发现二者符合良好,验证了数值模型的有效性;在此基础上,建立考虑流体弱黏性效应的双气泡耦合模型,研究流体黏性和表面张力作用下,气泡表面变形、射流速度、流场能量转换等物理量的变化规律;最后研究雷诺数和韦伯数对于气泡脉动特性的影响规律.结果表明,流体黏性会抑制气泡脉动和气泡射流发展,降低气泡半径和射流速度;表面张力不改变气泡脉动幅值,但缩短了脉动周期,提升气泡势能.
    Boundary integral simulation has been conducted to study the motion and deformation of bubbles with weak viscous and surface tension effects in fluid. Both normal and tangential stress boundary conditions are satisfied and the weak viscous effects are confined to the thin boundary layers around bubble surfaces, which is also known as boundary layer theory of bubble. By using this method, the influence of viscosity and surface tension of fluid on the motion of bubbles has been studied. Both axisymmetric and three-dimensional numerical results are compared with analytical results of Rayleigh-Plesset equation. Good agreement between them is achieved, which validates the numerical model. On this basis, interaction model between two vertically placed bubbles is established, by taking the surface tension, gravity, and viscous effects into consideration. Variations of physical quantities including bubble deformation, jet velocity, and energy of fluid are studied. Last but not least, the influence of viscosity and surface tension on the motion of a spherical bubble is investigated. It is found that viscous effects of fluid depress the pulsation of bubble and part of fluid energy is transformed into viscous dissipation energy. As a result, the development of bubble jet, the radius of the bubble, and the jet velocity are reduced gradually. On the other hand, the surface tension of fluid does not change the range of the bubble pulsation but reduces the period of the bubble pulsation and enhances the potential energy of the bubble. This model and numerical results aim to provide some references for bubble dynamics in bioengineering, chemical engineering, naval architecture, and ocean engineering, etc.
      通信作者: 倪宝玉, nibaoyu@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51639004,51579054,11472088)、中央高校基本科研业务基金(批准号:HEUCFM170110,HEUCFP201701,HEUCFP201777)和哈尔滨工程大学学科创新引智计划资助的课题.
      Corresponding author: Ni Bao-Yu, nibaoyu@hrbeu.edu.cn
    • Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 51639004, 51579054, 11472088), the Fundamental Research Funds for the Central Universities, China (Grant Nos. HEUCFM170110, HEUCFP201701, HEUCFP201777), and the 111 Project of Harbin Engineering University, China.
    [1]

    Boulton-Stone J M, Blake J R 1993 J. Fluid Mech. 254 437

    [2]

    Cui P, Zhang A M, Wang S P 2016 Phys. Fluids 28 117103

    [3]

    Xue Y Z, Cui B, Ni B Y 2016 Ocean Eng. 118 58

    [4]

    Sato K, Tomita Y, Shima A 1994 J. Acoust. Soc. Am. 95 2416

    [5]

    Rungsiyaphornrat S, Klaseboer E, Khoo B C, Yeo K S 2003 Comput. Fluids 32 1049

    [6]

    Chew L W, Klaseboer E, Ohl S W, Khoo B C 2011 Phys. Rev. E 84 0663078

    [7]

    Han R, Li S, Zhang A M, Wang Q X 2016 Phys. Fluids 28 062104

    [8]

    Guo X, Cai C, Xu G, Yang Y, Tu J, Huang P, Zhang D 2017 Ultrason. Sonoche. 39 863

    [9]

    Zhang Y, Zhang Y, Li S 2017 Ultrason. Sonoche. 35 431

    [10]

    Liu L T, Yao X L, Zhang A M, Chen Y Y 2017 Phys. Fluids 29 012105

    [11]

    Miksis M J, Vanden-Broeck J M, Keller J B 1982 J. Fluid Mech. 123 31

    [12]

    Lundgren S, Mansour N 1988 J. Fluid Mech. 194 479

    [13]

    Boulton-Stone J M 1995 J. Fluid Mech. 302 231

    [14]

    Georgescu S C, Achard J L, Canot E 2002 Euro. J. Mech. B-Fluids 21 265

    [15]

    Klaseboer E, Manica R, Chan D Y C, Khoo B C 2011 Eng. Anal. Bound. Elem. 35 489

    [16]

    Joseph D D, Wang J 2004 J. Fluid Mech. 505 365

    [17]

    Lind S J, Phillips T N 2012 Theor. Comp. Fluid Dyn. 26 245

    [18]

    Lind S J, Phillips T N 2013 Phys. Fluids 25 022014

    [19]

    Ni B Y, Li S, Zhang A M 2013 Acta Phys. Sin. 62 124704 (in Chinese)[倪宝玉, 李帅, 张阿漫 2013 物理学报 62 124704]

    [20]

    Zhang A M, Ni B Y 2014 Comput. Fluids 92 22

    [21]

    Li S, NI B Y 2016 Eng. Anal. Bound. Elem. 68 63

    [22]

    Lamb H 1932 Hydrodynamics (sixth Ed.) (Cambridge:Cambridge University Press) pp580-581

    [23]

    Wu G X 1991 Appl. Ocean Res. 13 317

    [24]

    Rayleigh J W 1917 Philos. Mag. 34 94

    [25]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. 37 1179

    [26]

    Best J P 1993 J. Fluid Mech. 251 79

  • [1]

    Boulton-Stone J M, Blake J R 1993 J. Fluid Mech. 254 437

    [2]

    Cui P, Zhang A M, Wang S P 2016 Phys. Fluids 28 117103

    [3]

    Xue Y Z, Cui B, Ni B Y 2016 Ocean Eng. 118 58

    [4]

    Sato K, Tomita Y, Shima A 1994 J. Acoust. Soc. Am. 95 2416

    [5]

    Rungsiyaphornrat S, Klaseboer E, Khoo B C, Yeo K S 2003 Comput. Fluids 32 1049

    [6]

    Chew L W, Klaseboer E, Ohl S W, Khoo B C 2011 Phys. Rev. E 84 0663078

    [7]

    Han R, Li S, Zhang A M, Wang Q X 2016 Phys. Fluids 28 062104

    [8]

    Guo X, Cai C, Xu G, Yang Y, Tu J, Huang P, Zhang D 2017 Ultrason. Sonoche. 39 863

    [9]

    Zhang Y, Zhang Y, Li S 2017 Ultrason. Sonoche. 35 431

    [10]

    Liu L T, Yao X L, Zhang A M, Chen Y Y 2017 Phys. Fluids 29 012105

    [11]

    Miksis M J, Vanden-Broeck J M, Keller J B 1982 J. Fluid Mech. 123 31

    [12]

    Lundgren S, Mansour N 1988 J. Fluid Mech. 194 479

    [13]

    Boulton-Stone J M 1995 J. Fluid Mech. 302 231

    [14]

    Georgescu S C, Achard J L, Canot E 2002 Euro. J. Mech. B-Fluids 21 265

    [15]

    Klaseboer E, Manica R, Chan D Y C, Khoo B C 2011 Eng. Anal. Bound. Elem. 35 489

    [16]

    Joseph D D, Wang J 2004 J. Fluid Mech. 505 365

    [17]

    Lind S J, Phillips T N 2012 Theor. Comp. Fluid Dyn. 26 245

    [18]

    Lind S J, Phillips T N 2013 Phys. Fluids 25 022014

    [19]

    Ni B Y, Li S, Zhang A M 2013 Acta Phys. Sin. 62 124704 (in Chinese)[倪宝玉, 李帅, 张阿漫 2013 物理学报 62 124704]

    [20]

    Zhang A M, Ni B Y 2014 Comput. Fluids 92 22

    [21]

    Li S, NI B Y 2016 Eng. Anal. Bound. Elem. 68 63

    [22]

    Lamb H 1932 Hydrodynamics (sixth Ed.) (Cambridge:Cambridge University Press) pp580-581

    [23]

    Wu G X 1991 Appl. Ocean Res. 13 317

    [24]

    Rayleigh J W 1917 Philos. Mag. 34 94

    [25]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. 37 1179

    [26]

    Best J P 1993 J. Fluid Mech. 251 79

  • [1] 贺啸秋, 熊永亮, 彭泽瑞, 徐顺. 旋转肥皂泡热对流的能量耗散与边界层特性的数值模拟研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220693
    [2] 黄皓伟, 梁宏, 徐江荣. 表面张力对高雷诺数Rayleigh-Taylor不稳定性后期增长的影响. 物理学报, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [3] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [4] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力. 物理学报, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [5] 张丽娟, 张传超, 陈静, 白阳, 蒋一岚, 蒋晓龙, 王海军, 栾晓雨, 袁晓东, 廖威. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究. 物理学报, 2018, 67(1): 016103. doi: 10.7498/aps.67.20171839
    [6] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [7] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [8] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [9] 李帅, 孙龙泉, 张阿漫. 水中上浮气泡动态特性研究. 物理学报, 2014, 63(18): 184701. doi: 10.7498/aps.63.184701
    [10] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [11] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的近平板圆孔气泡动力学行为研究. 物理学报, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [12] 刘云龙, 张阿漫, 王诗平, 田昭丽. 基于边界元法的气泡同波浪相互作用研究 . 物理学报, 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [13] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟. 物理学报, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [14] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [15] 赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武. 含气量对黏性液体中空泡脉动特性的影响. 物理学报, 2009, 58(12): 8400-8405. doi: 10.7498/aps.58.8400
    [16] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [17] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [18] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究. 物理学报, 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [19] 李睿劬, 李存标. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [20] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
计量
  • 文章访问数:  5414
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-18
  • 修回日期:  2017-08-12
  • 刊出日期:  2017-12-05

流体黏性及表面张力对气泡运动特性的影响

  • 1. 哈尔滨工程大学 船舶工程学院, 哈尔滨 150001
  • 通信作者: 倪宝玉, nibaoyu@hrbeu.edu.cn
    基金项目: 国家自然科学基金(批准号:51639004,51579054,11472088)、中央高校基本科研业务基金(批准号:HEUCFM170110,HEUCFP201701,HEUCFP201777)和哈尔滨工程大学学科创新引智计划资助的课题.

摘要: 基于气泡边界层理论,引入黏性修正,采用边界积分法,考虑黏性效应和表面张力在单气泡以及双气泡耦合作用过程中的影响.首先将建立的数值模型与Rayleigh-Plesset的解析解进行对比,发现二者符合良好,验证了数值模型的有效性;在此基础上,建立考虑流体弱黏性效应的双气泡耦合模型,研究流体黏性和表面张力作用下,气泡表面变形、射流速度、流场能量转换等物理量的变化规律;最后研究雷诺数和韦伯数对于气泡脉动特性的影响规律.结果表明,流体黏性会抑制气泡脉动和气泡射流发展,降低气泡半径和射流速度;表面张力不改变气泡脉动幅值,但缩短了脉动周期,提升气泡势能.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回