搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水中上浮气泡动态特性研究

李帅 孙龙泉 张阿漫

引用本文:
Citation:

水中上浮气泡动态特性研究

李帅, 孙龙泉, 张阿漫

Dynamic behavior of rising bubble

Li Shuai, Sun Long-Quan, Zhang A-Man
PDF
导出引用
  • 针对水中的上浮气泡,计入表面张力的作用,然后将气泡边界层内黏性效应分为法向和切向两部分,其中附加法向黏性应力通过Young-Laplace关系考虑;附加切向黏性力是基于黏性耗散能量等效原理,引入黏性修正压力代替. 首先建立了轴对称和三维上浮气泡边界元模型,将数值结果与理论值和实验值进行对比分析,有良好的符合度,验证了数值模型的有效性;然后针对毫米量级上浮气泡的平衡速度与形态,讨论了气泡初始条件、表面张力和黏性对气泡上浮过程中动力学行为的影响;最后,提出了一种处理三维上浮气泡融合的数值方法,计算结果与实验现象符合良好,并且能够反映气泡融合后的复杂现象细节.
    This study focuses on the dynamic behavior of rising bubble in water with taking surface tension and viscous effect into consideration. The Young-Laplace equation is adopted to obtain the viscous component of the normal stress, and the tangential component is evaluated by viscous correction pressure, which is based on viscous dissipation energy equivalence principle. Firstly, both axi-symmetric and three-dimensional model is established by employing boundary integral method. The validation of our model is confirmed by comparing the analytical results with the experimental results, and they are in good agreement with each other. Secondly, the shape and balanced velocity of millimetre-sized bubble are studied, and the influences of initial condition, surface tension and viscosity on the dynamic behaviour of the bubble are also discussed. Finally a numerical technic is put forward to handle the coalescence of two rising bubbles, which can show some detailed information about the coalescence process.
    • 基金项目: 国家自然科学基金优秀青年科学基金(批准号:51222904)、中组部青年拔尖人才支持计划和国防基础科研基金(批准号:B2420133001)资助的课题.
    • Funds: Project supported by the Excellent Scientists Fund of National Natural Science Foundation of China (Grant No. 51222904), Central Organization Department of Top Young Talent Support Program, and the National Defense Basic Scientific Research Project, China (Grant No. B2420133001).
    [1]

    Moore D W 1963 J. Fluid Mech. 16 161

    [2]

    Moore D W 1965 J. Fluid Mech. 23 749

    [3]

    Duineveld P C 1995 J. Fluid Mech. 292 325

    [4]

    Raymond F, Rosant J M 2000 Chem. Eng. Sci. 55 943

    [5]

    Zenit R, Magnaudet J 2008 Phys. Fluids 20 061702

    [6]

    Wu M, Gharib M 2002 Phys. Fluids 14 49

    [7]

    Amirnia S, de Bruyn J R, Bergougnou M A, Margaritis A 2013 Chem. Eng. Sci. 94 60

    [8]

    Duineveld P C 1998 In Fascination of Fluid Dynamics (Berlin: Springer Netherlands) pp409-439

    [9]

    Sanada T, Sato A, Shirota M, Watanabe M 2009 Chem. Eng. Sci. 64 2659

    [10]

    Grenier N, Antuono M, Colagrossi A, Touze L 2009 J. Comput. Phys. 228 8380

    [11]

    Hua J, Lou J 2007 J. Comput. Phys. 222 769

    [12]

    Hua J, Stene J F, Lin P 2008 J. Comput. Phys. 227 3358

    [13]

    Chen R H, Tian W X, Su G H, Qiu S Z, Ishiwatari T, Oki Y 2011 Chem. Eng. Sci. 66 5055

    [14]

    Wang H, Zhang Z Y, Yang Y M, Hu Y, Zhang H S 2008 Chin. Phys. B 17 3847

    [15]

    Wang H, Zhang Z Y, Yang Y M, Zhang H S 2010 Chin. Phys. B 19 026801

    [16]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Theoret. Comput. Fluid Dyn. 8 73

    [17]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Comput. Fluids 25 607

    [18]

    Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P, Debono S, Charlier H 2005 J. Fluid Mech. 537 387

    [19]

    Rungsiyaphornrat S, Klaseboer E, Khoo B C, Yeo K S 2003 Comput. Fluids 32 1049

    [20]

    Li Z R, Sun L, Zong Z, Jing D 2012 Acta Mech. 223 2331

    [21]

    Lundgren T S, Mansour N N 1991 J. Fluid Mech. 224 177

    [22]

    Lind S J, Phillips T N 2010 J. Non-Newton. Fluid 165 852

    [23]

    Li S, Zhang A M 2014 Acta Phys. Sin. 63 054705(in Chinese)[李帅, 张阿漫 2014 物理学报 63 054705]

    [24]

    Klaseboer E, Manica R, Khoo B C, Derek Y C C 2011 Eng. Anal. Bound. Elem. 35 489

    [25]

    Zhang A M, Ni B Y 2014 Comput. Fluids 92 22

    [26]

    Newman J N 1977 Marine Hydrodynamics (1st Ed.) (London: MIT Press) p131

    [27]

    Yang W J, Yeh H C 1966 AIChE J. 12 927

    [28]

    Best J P 1993 J. Fluid Mech. 251 79

    [29]

    Lamb H 1932 Hydrodynamics (Cambridge: Cambridge University Press) p473

    [30]

    Joseph D D, Wang J 2004 J. Fluid Mech. 505 365

    [31]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927

    [32]

    Wu G X 1991 App. Ocean Res. 13 317

    [33]

    Best J P 1994 Bubble Dynamics and Interface Phenomena (Berlin: Springer) p405

    [34]

    Lee M, Klaseboer E, Khoo B C 2007 J. Fluid Mech. 570 407

    [35]

    Malysa K, Krasowska M, Krzan M 2005 Adv. Colloid Interfac. 114 205

    [36]

    Bhaga D, Weber M E 1981 J. Fluid Mech. 105 61

    [37]

    Suñol F, González-Cinca R 2010 Colloid. Surface. A 365 36

    [38]

    Haberman W L, Morton R K 1953 An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids (Washington: David Taylor Model Basin Washington DC) p18

    [39]

    Clift R, Grace J R, Weber M E 1978 Bubbles, Drops and Particles (New York: Academic Press) p346

    [40]

    Batchelor G K 1967 An introduction to fluid dynamics (Cambridge: Cambridge University Press) p368

    [41]

    Loth E 2008 Int. J Multiphas. Flow 34 523

    [42]

    Khan A R, Richardson J F 1987 Chem. Eng. Commun. 62 135

  • [1]

    Moore D W 1963 J. Fluid Mech. 16 161

    [2]

    Moore D W 1965 J. Fluid Mech. 23 749

    [3]

    Duineveld P C 1995 J. Fluid Mech. 292 325

    [4]

    Raymond F, Rosant J M 2000 Chem. Eng. Sci. 55 943

    [5]

    Zenit R, Magnaudet J 2008 Phys. Fluids 20 061702

    [6]

    Wu M, Gharib M 2002 Phys. Fluids 14 49

    [7]

    Amirnia S, de Bruyn J R, Bergougnou M A, Margaritis A 2013 Chem. Eng. Sci. 94 60

    [8]

    Duineveld P C 1998 In Fascination of Fluid Dynamics (Berlin: Springer Netherlands) pp409-439

    [9]

    Sanada T, Sato A, Shirota M, Watanabe M 2009 Chem. Eng. Sci. 64 2659

    [10]

    Grenier N, Antuono M, Colagrossi A, Touze L 2009 J. Comput. Phys. 228 8380

    [11]

    Hua J, Lou J 2007 J. Comput. Phys. 222 769

    [12]

    Hua J, Stene J F, Lin P 2008 J. Comput. Phys. 227 3358

    [13]

    Chen R H, Tian W X, Su G H, Qiu S Z, Ishiwatari T, Oki Y 2011 Chem. Eng. Sci. 66 5055

    [14]

    Wang H, Zhang Z Y, Yang Y M, Hu Y, Zhang H S 2008 Chin. Phys. B 17 3847

    [15]

    Wang H, Zhang Z Y, Yang Y M, Zhang H S 2010 Chin. Phys. B 19 026801

    [16]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Theoret. Comput. Fluid Dyn. 8 73

    [17]

    Wang Q X, Yeo K S, Khoo B C, Lam K Y 1996 Comput. Fluids 25 607

    [18]

    Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P, Debono S, Charlier H 2005 J. Fluid Mech. 537 387

    [19]

    Rungsiyaphornrat S, Klaseboer E, Khoo B C, Yeo K S 2003 Comput. Fluids 32 1049

    [20]

    Li Z R, Sun L, Zong Z, Jing D 2012 Acta Mech. 223 2331

    [21]

    Lundgren T S, Mansour N N 1991 J. Fluid Mech. 224 177

    [22]

    Lind S J, Phillips T N 2010 J. Non-Newton. Fluid 165 852

    [23]

    Li S, Zhang A M 2014 Acta Phys. Sin. 63 054705(in Chinese)[李帅, 张阿漫 2014 物理学报 63 054705]

    [24]

    Klaseboer E, Manica R, Khoo B C, Derek Y C C 2011 Eng. Anal. Bound. Elem. 35 489

    [25]

    Zhang A M, Ni B Y 2014 Comput. Fluids 92 22

    [26]

    Newman J N 1977 Marine Hydrodynamics (1st Ed.) (London: MIT Press) p131

    [27]

    Yang W J, Yeh H C 1966 AIChE J. 12 927

    [28]

    Best J P 1993 J. Fluid Mech. 251 79

    [29]

    Lamb H 1932 Hydrodynamics (Cambridge: Cambridge University Press) p473

    [30]

    Joseph D D, Wang J 2004 J. Fluid Mech. 505 365

    [31]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927

    [32]

    Wu G X 1991 App. Ocean Res. 13 317

    [33]

    Best J P 1994 Bubble Dynamics and Interface Phenomena (Berlin: Springer) p405

    [34]

    Lee M, Klaseboer E, Khoo B C 2007 J. Fluid Mech. 570 407

    [35]

    Malysa K, Krasowska M, Krzan M 2005 Adv. Colloid Interfac. 114 205

    [36]

    Bhaga D, Weber M E 1981 J. Fluid Mech. 105 61

    [37]

    Suñol F, González-Cinca R 2010 Colloid. Surface. A 365 36

    [38]

    Haberman W L, Morton R K 1953 An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids (Washington: David Taylor Model Basin Washington DC) p18

    [39]

    Clift R, Grace J R, Weber M E 1978 Bubbles, Drops and Particles (New York: Academic Press) p346

    [40]

    Batchelor G K 1967 An introduction to fluid dynamics (Cambridge: Cambridge University Press) p368

    [41]

    Loth E 2008 Int. J Multiphas. Flow 34 523

    [42]

    Khan A R, Richardson J F 1987 Chem. Eng. Commun. 62 135

  • [1] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法. 物理学报, 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [2] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [3] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [4] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [5] 陈曦, Yu Whitney, Joglekar Yogesh N, 郑友取, 许友生, 吴锋民. 驱动模式对具有库源平衡的黏性流体中空间反射时间反演联合对称性的影响. 物理学报, 2014, 63(6): 060206. doi: 10.7498/aps.63.060206
    [6] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究. 物理学报, 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [7] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [8] 赵文达, 赵建, 续志军. 基于结构张量的变分多源图像融合. 物理学报, 2013, 62(21): 214204. doi: 10.7498/aps.62.214204
    [9] 姜祝辉, 游小宝, 肖义国. 高度计风速与辐射计风速的变分融合研究. 物理学报, 2013, 62(12): 129202. doi: 10.7498/aps.62.129202
    [10] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [11] 马庆禄, 刘卫宁, 孙棣华. 道路交通流状态的多参数融合预测方法. 物理学报, 2012, 61(16): 169501. doi: 10.7498/aps.61.169501
    [12] 王龙, 李家春, 周济福. 黏性泥沙絮凝沉降的数值研究. 物理学报, 2010, 59(5): 3315-3323. doi: 10.7498/aps.59.3315
    [13] 张亮, 张立凤, 吴海燕, 王骥鹏. 黏性水波振荡型行波解的存在性. 物理学报, 2009, 58(2): 703-711. doi: 10.7498/aps.58.703
    [14] 赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武. 含气量对黏性液体中空泡脉动特性的影响. 物理学报, 2009, 58(12): 8400-8405. doi: 10.7498/aps.58.8400
    [15] 高 洋, 李丽香, 彭海朋, 杨义先, 张小红. 多重边融合复杂动态网络的自适应同步. 物理学报, 2008, 57(4): 2081-2091. doi: 10.7498/aps.57.2081
    [16] 丛 蕊, 刘树林, 马 锐. 基于数据融合的多变量相空间重构方法. 物理学报, 2008, 57(12): 7487-7493. doi: 10.7498/aps.57.7487
    [17] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究. 物理学报, 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [18] 宗晓萍, 徐 艳, 董江涛. 多信息融合的模糊边缘检测技术. 物理学报, 2006, 55(7): 3223-3228. doi: 10.7498/aps.55.3223
    [19] 刘延柱. 黏性介质中圆截面弹性细杆的平面振动. 物理学报, 2005, 54(11): 4989-4993. doi: 10.7498/aps.54.4989
    [20] 陈若航, 孔令江, 何云, 李华兵, 刘慕仁. 二维空腔黏性流的格子Boltzmann方法模拟. 物理学报, 2000, 49(4): 631-635. doi: 10.7498/aps.49.631
计量
  • 文章访问数:  4796
  • PDF下载量:  627
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-12
  • 修回日期:  2014-04-10
  • 刊出日期:  2014-09-05

/

返回文章
返回