搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驱动模式对具有库源平衡的黏性流体中空间反射时间反演联合对称性的影响

陈曦 Yu Whitney Joglekar Yogesh N 郑友取 许友生 吴锋民

引用本文:
Citation:

驱动模式对具有库源平衡的黏性流体中空间反射时间反演联合对称性的影响

陈曦, Yu Whitney, Joglekar Yogesh N, 郑友取, 许友生, 吴锋民

The influence of different driving patterns on parity time-reversal symmetry

Chen Xi, Yu Whitney, Joglekar Yogesh N, Zheng You-Qu, Xu You-Sheng, Wu Feng-Min
PDF
导出引用
  • 满足空间反射时间反演parity and time-reversal(PT)联合对称性的库源平衡宏观开放系统近几年成为一个研究热点. 本文将PT对称性引入到动力学系统,用格子玻尔兹曼方法求解Navier-Stokes方程,发现在二维黏性流体中,如果进口和出口的条件完全等同,在低雷诺数流动中,流场的PT对称函数(ρ)随雷诺数(Re)的增高以 ρn ~ Ren 指数增长. 用三种不同的速度剖面来驱动流体,计算流场达到稳定状态时的PT对称性. 结果发现,进出口平衡的黏性管流中,ρn ~ Ren 的规律在三种驱动模式中出现,表明流场的PT 对称性是由流体本身决定的,与驱动模式没有关系,从此论证所得到的指数率的谱适性.
    In the past few years, the balanced sink and source macroscopic open system, which satisfies the parity and time-reversal symmetry, has become a research hot point. We introduce parity and time-reversal (PT) symmetry into fluid system by setting up balanced inflow and outflow in a two-dimensional channel. The flow is governed by Navier-Stokes equation and we use lattice Boltzmann method to solve them. Defining configuration-dependent asymmetric functions in velocity, kinetic energy density, and vorticity fields, we find that the PT function of the flow increases with the increase of the 2th power of Reynolds number i.e., ρn~ Ren. In this work, we use three different velocity profiles to drive the flow. It is demonstrated that in the three driven modes, the power-law schedule holds true. It is concluded that PT asymmetry of the viscous flow is determined by the flow dynamics not by the driven modes, thereby verifies the universality of the power-law scaling in viscous flow with balanced inflow and outflow.
    • 基金项目: 国家自然科学基金重点项目(批准号:10932010)、国家自然科学基金(批准号:11072229,11072220,U1262109,11079029,61274099)和美国(the National Science Foundation DMR-1054020(YJ).)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 10932010), the National Natural Science Foundation of China (Grant Nos. 11072229, 11072220, U1262109, 11079029, 61274099), and the National Science Foundation DMR-1054020 (YJ).
    [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [2]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401

    [3]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [4]

    Mostafazadeh A 2010 Int. J. Geom. Meth. Mod. Phys. 7 1191

    [5]

    Bendix O, Fleischmann R, Kottos T, Shapiro B 2009 Phys. Rev. Lett. 103 030402

    [6]

    Jin L, Song Z 2009 Phys. Rev. A 80 052107

    [7]

    Joglekar Y N, Scott D, Babbey M, Saxena A 2010 Phys. Rev. A 82 030103(R)

    [8]

    Znojil M 2010 Phys. Rev. A 82 052113

    [9]

    Znojil M 2011 Phys. Lett. A 375 3435

    [10]

    Joglekar Y N, Saxena A 2011 Phys. Rev. A 83 050101(R)

    [11]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902

    [12]

    Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192

    [13]

    Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y, Scherer A 2011 Science 333 729

    [14]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167

    [15]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)

    [16]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173

    [17]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108

    [18]

    Kottos T 2010 Nat. Phys. 6 192

    [19]

    Zheng M C, Christodoulides D N, Fleischmann R, Kottos T 2010 Phys. Rev. A 82 010103(R)

    [20]

    Wang C Y 1990 Acta Mech. 81 69

    [21]

    Wang C Y 1991 Ann. Rev. Fluid Mech. 23 159

    [22]

    Yu W, Chen Xi, Xu Y S, Joglekar Y N 2014 Phys. Rev. E (in press)

    [23]

    Chen S, Doolen G D 1998 Ann. Rev. Fluid Mech. 30 329

    [24]

    Aidun C K, Clausen J R 2010 Ann. Rev. Fluid Mech. 42 439

    [25]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 物理学报 59 178]

    [26]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [27]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 物理学报 61 150501]

    [28]

    Wen B H, Liu H Y, Zhang C Y, Wang Q 2009 Chin. Phys. B 18 4353

    [29]

    Yu H D, Zhao K H 2000 Acta Phys. Sin. 49 816 (in Chinese) [余慧丹, 赵凯华 2000 物理学报 49 816]

    [30]

    Yu H D, Zhao K H 1999 Acta Phys. Sin. 48 1475 (in Chinese) [余慧丹, 赵凯华 1999 物理学报 48 1475]

    [31]

    He X, Luo L S 1997 Phys. Rev. E 55 R6333

    [32]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511

    [33]

    Chen H, Chen S, Matthaeus H W 1992 Phys. Rev. A 45 5339

    [34]

    Qian Y H, d’Humieres D, Lallemand P 1992 Europhys. Lett. 17 479

    [35]

    He X, Luo L S 1997 J. Stat. Phys. 88 927

    [36]

    Skordos P A 1993 Phys. Rev. E 48 4823

    [37]

    d’Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. R. Soc. Lond. A 360 437

    [38]

    Luo L S 2000 Phys. Rev. E 62 4982

  • [1]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [2]

    Bender C M, Brody D C, Jones H F 2002 Phys. Rev. Lett. 89 270401

    [3]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [4]

    Mostafazadeh A 2010 Int. J. Geom. Meth. Mod. Phys. 7 1191

    [5]

    Bendix O, Fleischmann R, Kottos T, Shapiro B 2009 Phys. Rev. Lett. 103 030402

    [6]

    Jin L, Song Z 2009 Phys. Rev. A 80 052107

    [7]

    Joglekar Y N, Scott D, Babbey M, Saxena A 2010 Phys. Rev. A 82 030103(R)

    [8]

    Znojil M 2010 Phys. Rev. A 82 052113

    [9]

    Znojil M 2011 Phys. Lett. A 375 3435

    [10]

    Joglekar Y N, Saxena A 2011 Phys. Rev. A 83 050101(R)

    [11]

    Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, Christodoulides D N 2009 Phys. Rev. Lett. 103 093902

    [12]

    Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, Kip D 2010 Nat. Phys. 6 192

    [13]

    Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y, Scherer A 2011 Science 333 729

    [14]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167

    [15]

    Schindler J, Li A, Zheng M C, Ellis F M, Kottos T 2011 Phys. Rev. A 84 040101(R)

    [16]

    Bender C M, Berntson B K, Parker D, Samuel E 2013 Am. J. Phys. 81 173

    [17]

    Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, Scherer A 2013 Nat. Mater. 12 108

    [18]

    Kottos T 2010 Nat. Phys. 6 192

    [19]

    Zheng M C, Christodoulides D N, Fleischmann R, Kottos T 2010 Phys. Rev. A 82 010103(R)

    [20]

    Wang C Y 1990 Acta Mech. 81 69

    [21]

    Wang C Y 1991 Ann. Rev. Fluid Mech. 23 159

    [22]

    Yu W, Chen Xi, Xu Y S, Joglekar Y N 2014 Phys. Rev. E (in press)

    [23]

    Chen S, Doolen G D 1998 Ann. Rev. Fluid Mech. 30 329

    [24]

    Aidun C K, Clausen J R 2010 Ann. Rev. Fluid Mech. 42 439

    [25]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 物理学报 59 178]

    [26]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [27]

    Wu W, Sun D K, Dai T, Zhu M F 2012 Acta Phys. Sin. 61 150501 (in Chinese) [吴伟, 孙东科, 戴挺, 朱鸣芳 2012 物理学报 61 150501]

    [28]

    Wen B H, Liu H Y, Zhang C Y, Wang Q 2009 Chin. Phys. B 18 4353

    [29]

    Yu H D, Zhao K H 2000 Acta Phys. Sin. 49 816 (in Chinese) [余慧丹, 赵凯华 2000 物理学报 49 816]

    [30]

    Yu H D, Zhao K H 1999 Acta Phys. Sin. 48 1475 (in Chinese) [余慧丹, 赵凯华 1999 物理学报 48 1475]

    [31]

    He X, Luo L S 1997 Phys. Rev. E 55 R6333

    [32]

    Bhatnagar P L, Gross E P, Krook M 1954 Phys. Rev. 94 511

    [33]

    Chen H, Chen S, Matthaeus H W 1992 Phys. Rev. A 45 5339

    [34]

    Qian Y H, d’Humieres D, Lallemand P 1992 Europhys. Lett. 17 479

    [35]

    He X, Luo L S 1997 J. Stat. Phys. 88 927

    [36]

    Skordos P A 1993 Phys. Rev. E 48 4823

    [37]

    d’Humieres D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. R. Soc. Lond. A 360 437

    [38]

    Luo L S 2000 Phys. Rev. E 62 4982

  • [1] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟. 物理学报, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [2] 张乾毅, 韦华健, 李华兵. 基于晶格玻尔兹曼方法的多段淋巴管模型. 物理学报, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [3] 张士杰, 王颖明, 王琦, 李晨宇, 李日. 基于元胞自动机-格子玻尔兹曼模型的枝晶碰撞行为模拟. 物理学报, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [4] 林黎明. 低雷诺数下钝体三维尾迹中的涡量符号律. 物理学报, 2020, 69(3): 034701. doi: 10.7498/aps.69.20191011
    [5] 丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法. 物理学报, 2020, 69(13): 134702. doi: 10.7498/aps.69.20200091
    [6] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [7] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [8] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究. 物理学报, 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [9] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [10] 何郁波, 唐先华, 林晓艳. 基于格子玻尔兹曼方法的一类FitzHugh-Nagumo系统仿真研究. 物理学报, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [11] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型. 物理学报, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [12] 薛泽, 施娟, 王立龙, 周锦阳, 谭惠丽, 李华兵. 粒子在锥形管中运动的晶格玻尔兹曼方法研究. 物理学报, 2013, 62(8): 084702. doi: 10.7498/aps.62.084702
    [13] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [14] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [15] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [16] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [17] 施娟, 李剑, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究颗粒在涡流中的运动. 物理学报, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [18] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁. 用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为. 物理学报, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [19] 许友生, 李华兵, 方海平, 黄国翔. 用格子玻尔兹曼方法研究流动-反应耦合的非线性渗流问题. 物理学报, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
    [20] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
计量
  • 文章访问数:  5298
  • PDF下载量:  424
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-10
  • 修回日期:  2013-12-19
  • 刊出日期:  2014-03-05

/

返回文章
返回