搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为

孙东科 项楠 陈科 倪中华

引用本文:
Citation:

格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为

孙东科, 项楠, 陈科, 倪中华

Lattice Boltzmann modeling of particle inertial migration in a curved channel

Sun Dong-Ke, Xiang Nan, Chen Ke, Ni Zhong-Hua
PDF
导出引用
  • 本文发展了一个能够模拟微流场环境下粒子惯性迁移行为的三维耦合模型. 该模型采用基于动理论的格子玻尔兹曼方法(LBM)描述流体流动, 采用牛顿动力学模型描述粒子的平动和转动, 采用基于LBM反弹格式的运动边界法实现流体与粒子模型的耦合. 模拟了重力作用下粒子的沉降过程和Couette流条件下粒子的转动过程, 通过将模拟结果与文献中的基准解进行对比定量验证了模型的可靠性. 模拟了不同大小的球形粒子在环形流道中的迁移, 成功复现了经典的流道截面二次流形成过程, 分析了粒径大小对粒子在流道中平衡位置的影响机理. 结果表明, 粒子在弯流道中的平衡位置与粒径大小密切相关, 小半径粒子的平衡位置靠近流道外侧而大半径粒子则靠近流道内侧. 通过实验对模拟结果进行了定性验证. 本模型为深入研究微流场环境下粒子的运动特性以及开发微流控粒子分选器件提供了参考依据.
    A three-dimensional coupled model for particle inertial migration in the presence of micro flows is proposed and implemented. In the present model, the kinetic theory based lattice Boltzmann method is used to describe the fluid flows, and the Newton dynamics equation based model is used to describe the translation and rotation of the particle. The fluid and particle model are coupled by the LBM bounceback scheme based moving boundary method. The processes of particle settlement under gravity and particle rotation in the condition of Couette flow take place. The reliability of the present model and algorithm is validated through comparisons between the present simulation and the benchmark tests in the literature. The simulations of particle migration with various radii in an annular curved channel are performed, and the classic velocity distribution of the secondary flow in the channel cross-section is reproduced successfully. The mechanism of the particle radius influencing the particle equilibrium position in the curved channel is discussed. The results show that the particle equilibrium position in the curved channel will approach to the channel inner wall with the increase of radius. The present model is of important value for detailed study of the particle dynamics in micro flows as well as for the design and development of new micro fluidic particle selective chips and devices.
    • 基金项目: 国家自然科学基金重大研究计划(批准号: 91023024)、国家博士后科学基金(批准号: 2012M511647)和江苏省普通高校研究生科研创新计划(批准号: CXZZ0138)资助的课题.
    • Funds: Project supported by the Major Research plan of the National Natural Science Foundation of China (Grant No. 91023024), the National Science Foundation for Post-doctoral Scientists of China (Grant No. 2012M511647), and the Jiangsu Graduate Innovative Research Program (Grant No. CXZZ_0138).
    [1]

    Di Carlo D 2009 Lab. Chip 9 3038

    [2]

    Hur S C, Choi S E, Kwon S, Di Carlo D 2011 Appl. Phys. Lett. 99 044101

    [3]

    Choi Y S, Seo K W, Lee S J 2011 Lab. Chip 11 460

    [4]

    Kuntaegowdanahalli S S, Bhagat A A S, Kuma G, Papautsky I 2009 Lab. Chip 9 2973

    [5]

    Di Carlo D, Irimia D,Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. USA 104 18892

    [6]

    Ookawara S, Higashi R, Street D, Ogawa K 2004 Chem. Eng. J. 101 171

    [7]

    Ookawara S, Street D, Ogawa K 2006 Chem. Eng. Sci. 61 3714

    [8]

    Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I 2008 Lab. Chip 8 1906

    [9]

    Mao X, Waldeisen J R, Huang T J 2007 Lab. Chip 7 1260

    [10]

    Di Carlo D, Edd J F, Humphry K J, Stone H A, Toner H 2009 Phys. Rev. Lett. 102 094503

    [11]

    Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401 (in Chinese) [曾建邦, 李隆键, 廖全, 蒋方明 2011 物理学报 60 066401]

    [12]

    Ladd A J C 1994 J. Fluid Mech. 271 285

    [13]

    Ladd A J C 1994 J. Fluid Mech. 271 311

    [14]

    Chun B, Ladd A J C, 2006 Phys. Fluids 18 031704

    [15]

    Aidun C K, Lu Y, Ding E J 1998 J. Fluid Mech. 373 287

    [16]

    Humphry K J, Kulkarni P M, Weitz D A, Morris J F, Stone H A 2010 Phys. Fluids 22 081703

    [17]

    Kilimnik A, Mao W, Alexeev A 2011 Phys. Fluids 23 123302

    [18]

    Iglberger K 2005 Master Thesis (Germany: University of Erlangen-Nuremberg)

    [19]

    Guo Z L, Zhao T S, Shi Y 2006 Phys. Fluids 18 067107

    [20]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Rev. E 65 046308

    [21]

    Mordant N, Pinton J F 2000 Eur. Phys. J. B 18 343

    [22]

    Sharma N, Patankar N A 2005 J. Comput. Phys. 205 439

    [23]

    Do-Quang M, Amberg G 2008 J. Comput. Phys. 227 1772

    [24]

    Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I 2008 Lab. Chip 8 1906

    [25]

    Yoon D H, Ha J B, Bahk Y K, Arakawa T, Shoji S, Go J S 2009 Lab. Chip 9 87

  • [1]

    Di Carlo D 2009 Lab. Chip 9 3038

    [2]

    Hur S C, Choi S E, Kwon S, Di Carlo D 2011 Appl. Phys. Lett. 99 044101

    [3]

    Choi Y S, Seo K W, Lee S J 2011 Lab. Chip 11 460

    [4]

    Kuntaegowdanahalli S S, Bhagat A A S, Kuma G, Papautsky I 2009 Lab. Chip 9 2973

    [5]

    Di Carlo D, Irimia D,Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. USA 104 18892

    [6]

    Ookawara S, Higashi R, Street D, Ogawa K 2004 Chem. Eng. J. 101 171

    [7]

    Ookawara S, Street D, Ogawa K 2006 Chem. Eng. Sci. 61 3714

    [8]

    Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I 2008 Lab. Chip 8 1906

    [9]

    Mao X, Waldeisen J R, Huang T J 2007 Lab. Chip 7 1260

    [10]

    Di Carlo D, Edd J F, Humphry K J, Stone H A, Toner H 2009 Phys. Rev. Lett. 102 094503

    [11]

    Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401 (in Chinese) [曾建邦, 李隆键, 廖全, 蒋方明 2011 物理学报 60 066401]

    [12]

    Ladd A J C 1994 J. Fluid Mech. 271 285

    [13]

    Ladd A J C 1994 J. Fluid Mech. 271 311

    [14]

    Chun B, Ladd A J C, 2006 Phys. Fluids 18 031704

    [15]

    Aidun C K, Lu Y, Ding E J 1998 J. Fluid Mech. 373 287

    [16]

    Humphry K J, Kulkarni P M, Weitz D A, Morris J F, Stone H A 2010 Phys. Fluids 22 081703

    [17]

    Kilimnik A, Mao W, Alexeev A 2011 Phys. Fluids 23 123302

    [18]

    Iglberger K 2005 Master Thesis (Germany: University of Erlangen-Nuremberg)

    [19]

    Guo Z L, Zhao T S, Shi Y 2006 Phys. Fluids 18 067107

    [20]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Rev. E 65 046308

    [21]

    Mordant N, Pinton J F 2000 Eur. Phys. J. B 18 343

    [22]

    Sharma N, Patankar N A 2005 J. Comput. Phys. 205 439

    [23]

    Do-Quang M, Amberg G 2008 J. Comput. Phys. 227 1772

    [24]

    Bhagat A A S, Kuntaegowdanahalli S S, Papautsky I 2008 Lab. Chip 8 1906

    [25]

    Yoon D H, Ha J B, Bahk Y K, Arakawa T, Shoji S, Go J S 2009 Lab. Chip 9 87

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟. 物理学报, 2024, 73(23): 234702. doi: 10.7498/aps.73.20241332
    [2] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟. 物理学报, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [3] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟. 物理学报, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [4] 郝鹏, 张丽丽, 丁明明. 高分子囊泡在微管流中惯性迁移现象的有限元分析. 物理学报, 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [5] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟. 物理学报, 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [6] 胡兵, 郁殿龙, 刘江伟, 朱付磊, 张振方. 流固耦合声子晶体管路冲击振动特性研究. 物理学报, 2020, 69(19): 194301. doi: 10.7498/aps.69.20200414
    [7] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [8] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究. 物理学报, 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [9] 刘梦珂, 张辉, 范宝春, 韩洋, 归明月. 电磁控制两自由度涡生振荡的机理研究. 物理学报, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [10] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [11] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法. 物理学报, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [12] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [13] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [14] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [15] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟. 物理学报, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [16] 孙健, 刘伟强. 疏导式结构在头锥热防护中的应用. 物理学报, 2012, 61(17): 174401. doi: 10.7498/aps.61.174401
    [17] 孙健, 刘伟强. 翼前缘层板对流冷却结构的防热效果分析. 物理学报, 2012, 61(12): 124701. doi: 10.7498/aps.61.124701
    [18] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [19] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟. 物理学报, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [20] 许友生, 李华兵, 方海平, 黄国翔. 用格子玻尔兹曼方法研究流动-反应耦合的非线性渗流问题. 物理学报, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
计量
  • 文章访问数:  8330
  • PDF下载量:  1419
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2012-07-09
  • 刊出日期:  2013-01-05

/

返回文章
返回