搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流固耦合声子晶体管路冲击振动特性研究

胡兵 郁殿龙 刘江伟 朱付磊 张振方

引用本文:
Citation:

流固耦合声子晶体管路冲击振动特性研究

胡兵, 郁殿龙, 刘江伟, 朱付磊, 张振方

Shock vibration characteristics of fluid-structure interaction phononic crystal pipeline

Hu Bing, Yu Dian-long, Liu Jiang-wei, Zhu Fu-lei, Zhang Zhen-fang
PDF
HTML
导出引用
  • 流固耦合管路系统广泛应用于各种装备中, 通常用来传递物质和能量或者动量. 由于流固耦合效应, 管壁在流体作用下易产生强烈的振动与噪声, 对装备安全性、隐蔽性产生严重影响, 甚至造成严重破坏. 流固耦合管路振动抑制需求迫切, 意义重大. 声子晶体可以利用其带隙特性抑制特定频率范围内弹性波的传播, 在减振降噪领域具有广泛的应用前景. 本文基于声子晶体理论, 研究了流固耦合条件下的布拉格声子晶体管路冲击振动传递特性. 将传递矩阵法和有限元法相结合, 计算了能带结构与带隙特性, 重点考虑了流固耦合效应下, 不同冲击激励条件下声子晶体管路振动特性, 分析了流固耦合对声子晶体管路振动传递特性的影响. 研究结果为流固耦合条件下管路系统的振动控制提供了技术参考.
    Fluid-structure interaction pipeline systems are extensively adopted to transfer matter, energy and momentum, which are widely used in various fields. Due to the fluid-structure interaction effect, the pipe wall proves to produce strong vibration and noise under fluid action, which has a serious influence on the safety and concealment of the equipment, even leading to serious damages. Therefore, it is of great significance to study the vibration characteristics of fluid-structure interaction pipeline and methods to reduce the vibration of pipeline both in theory and in practice. Phononic crystal can suppress the propagation of elastic waves in a specific frequency range by their special band-gap characteristics, which have wide application prospects in the field of vibration and noise reduction. Especially, the band gap characteristics of phononic crystal pipeline used to design fluid-structure interaction pipeline system have been widely studied, thus providing a new technical approach to reducing the vibration and noise of the pipeline. In this paper, based on the theory of phononic crystal, the vibration transfer characteristics of the Bragg phononic crystal pipeline under fluid-structure interaction are studied. Combining the transfer matrix method and the finite element method, the band structure and band gap characteristics are calculated. Using the finite element method, the vibration characteristics of the phononic crystal pipeline under fluid-structure interaction effect, the shock excitation of pipe wall and the shock excitation of the fluid are considered. The influence of the fluid-structure interaction on the vibration transmission characteristics of the phononic crystal pipeline is also analyzed. The research results indicate that when the fluid velocity in the fluid-structure interaction pipeline system is small the Bragg phononic crystal pipeline has a good attenuation effect on the shock excitation of pipe wall in the band gap range, and that when the fluid velocity increases the fluid-structure interaction effect becomes significant, the attenuation effect becoming weaker. Bragg phononic crystal pipeline has a certain attenuation effect on the pipe wall vibration caused by the fluid shock excitation near the band gap. The research results are expected to be able to provide a technical reference for the vibration control of pipeline systems under fluid-structure interaction conditions.
      通信作者: 郁殿龙, dianlongyu@vip.sina.com
    • 基金项目: 国家自然科学基金(批准号: 11872371)和国家自然科学基金重大项目(批准号: 11991032, 11991034)资助的课题
      Corresponding author: Yu Dian-long, dianlongyu@vip.sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11872371) and the Major Program of the National Natural Science Foundation of China (Grant Nos. 11991032, 11991034)
    [1]

    邵沛泽 2015 硕士学位论文 (北京: 北京工业大学)

    Shao P Z 2015 M. S. Thesis (Beijing: Beijing Institute of Technology) (in Chinese)

    [2]

    张阿漫, 戴绍仕 2011 流固耦合动力学 (北京: 国防工业出版社) 第3页

    Zhang A M, Dai S S 2011 Dynamics of Solid-fluid Interaction (Beijing: National Defense Industry Press) p3 (in Chinese)

    [3]

    马璐 2015 硕士学位论文 (兰州: 兰州理工大学)

    Ma L 2015 M.S. Thesis (Lanzhou: Lanzhou University of Technology) (in Chinese)

    [4]

    宋学官, 蔡林, 张华 2012 ANSYS流固耦合分析与工程实例 (北京: 中国水利水电出版社)第1页

    Song X G, Cai L, Zhang H 2012 ANSYS Fluid-structure Coupling Analysis and Engineering Example (Beijing: China Water & Power Press) p1 (in Chinese)

    [5]

    王海彦, 刘永刚 2015 ANSYS Fluent 流体数值计算方法与实例 (北京: 中国铁道出版社) 第2页

    Wang H Y, Liu Y G 2015 ANSYS Numerical Calculation Method and Example of ANSYS Fluent Fluid (Beijing: China Railway Press) p2 (in Chinese)

    [6]

    Chimakurthi S K, Reuss S, Tooley M, Scampoli S 2018 Eng. Comput.-Germany 34 385Google Scholar

    [7]

    Díaz-de-Anda A, Pimentel A, Flores J, Morales A, Gutiérrez L, Méndez-Sánchez R A 2005 J. Acoust. Soc. Am. 117 2814Google Scholar

    [8]

    Yang X D, Cui Q D, Qian Y J, Zhang W, Lim C W 2018 J. Appl. Mech. T ASME 85 0610121Google Scholar

    [9]

    Peiró-Torres M P, Castiñeira-Ibáñez S, Redondo J, Sánchez-Pérez J V 2019 Appl. Phys. Lett. 114 171901Google Scholar

    [10]

    Iqbal M, Jaya M M, Bursi O S, Kumar A, Ceravolo R 2020 Sci. Rep. 10 85Google Scholar

    [11]

    Sharma B, Sun C T 2016 J. Sandw. Struct. Mater. 18 50Google Scholar

    [12]

    Chen J S, Sharma B, Sun C T 2011 Compos. Struct. 93 2120Google Scholar

    [13]

    Chen J S, Sun C T 2011 J. Sandw. Struct. Mater. 13 391Google Scholar

    [14]

    Chen J S, Huang Y J 2016 J. Vib. Acoust. 138 0410091Google Scholar

    [15]

    Pai P F, Peng H, Jiang S 2014 Int. J. Mech. Sci. 79 195Google Scholar

    [16]

    Chen Y Y, Barnhart M V, Chen J K, Hu G K, Sun C T, Huang G L 2016 Compos. Struct. 136 358Google Scholar

    [17]

    Alamri S, Li B, Tan K T 2018 J. Appl. Phys. 123 95111Google Scholar

    [18]

    Li B, Liu Y, Tan K 2019 J. Sandw. Struct. Mater. 21 1880Google Scholar

    [19]

    Li Q Q, He Z C, Li E, Cheng A G 2018 Smart. Mater. Struct. 27 95015Google Scholar

    [20]

    Li Q Q, He Z C, Li E, Cheng A G 2019 J. Appl. Phys. 125 35104Google Scholar

    [21]

    Yu D L, Wang G, Liu Y Z, Wen J H, Qiu J 2006 Chin. Phys. 15 266Google Scholar

    [22]

    沈惠杰, 温激鸿, 郁殿龙, 温熙森 2009 物理学报 58 8357Google Scholar

    Shen H J, Wen J H, Yu D L, Wen X S 2009 Acta Phys. Sin. 58 8357Google Scholar

    [23]

    Shen H, Wen J, Yu D, Wen X 2009 J. Sound Vib. 328 57Google Scholar

    [24]

    Koo G K, Park Y S 1998 J. Sound Vib. 210 53Google Scholar

    [25]

    Sorokina S V, Ershova O A 2004 J. Sound Vib. 278 501Google Scholar

    [26]

    Sorokina S V, Ershova O A 2006 J. Sound Vib. 291 81Google Scholar

    [27]

    Sorokin S, Holst-Jensen O 2012 J. Vib. Acoust 134 41001Google Scholar

    [28]

    Yu D L, Wen J H, Zhao H G, Liu Y Z, Wen X S 2008 J. Sound Vib. 318 193Google Scholar

    [29]

    Yu D L, Wen J H, Zhao H G, Liu Y Z, Wen X S 2011 J. Vib. Acoust 133 14501Google Scholar

    [30]

    Yu D L, Wen J H, Shen H J, Wen X S 2012 Phys. Lett. A 376 3417Google Scholar

    [31]

    Yu D L, Du C Y, Shen H J, Liu J W, Wen J H 2017 Chin. Phys. Lett. 34 190Google Scholar

    [32]

    Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F, Wen J H 2018 Chin. Phys. B 27 285Google Scholar

    [33]

    Yu D L, Paidoussis M P, Shen H J, Wang L 2014 J. Appl. Mech.-T ASME 81 11001Google Scholar

    [34]

    Wen J H, Shen H J, Yu D L, Wen X S 2010 Chin. Phys. Lett. 27 133Google Scholar

    [35]

    Wei Z D, Li B R, Du J M, Yang G 2016 Chin. Phys. Lett. 33 68Google Scholar

    [36]

    刘东彦, 李发, 张建兴, 李宝仁 2016 机床与液压 44 74Google Scholar

    Liu D Y, Li F, Zhang J X, Li B R 2016 Mach. Tool & Hydr. 44 74Google Scholar

    [37]

    Shen H J, Wen J H, Yu D L, Asgari M, Wen X S 2013 J. Sound Vib. 332 4193Google Scholar

    [38]

    Shen H J, Wen J H, Yu D L, Yuan B, Wen X S 2014 J. Fluid. Struct. 46 134Google Scholar

    [39]

    Shen H J, Wen J H, Païdoussis M P, Yu D L, Asgari M, Wen X S 2012 Phys. Lett. A 376 3351Google Scholar

    [40]

    Shen H J, Païdoussis M P, Wen J H, Yu D L, Wen X S 2014 J. Sound Vib. 333 2735Google Scholar

    [41]

    Shen H J, Wen J H, Yu D L, Wen X S 2014 J. Vib. Control 21 3034Google Scholar

    [42]

    Liang F, Yang X D 2020 Appl. Math. Model. 77 522Google Scholar

    [43]

    尹志勇, 钟荣, 刘忠族 2006 舰船科学技术 28 23

    Yin Z Y, Zhong R, Liu Z Z 2006 Ship Sci. Tech. 28 23

    [44]

    Khudayarov B A, Komilova K M, Turaev F Z 2019 Int. J. Appl. Mech. 11 1950090Google Scholar

    [45]

    Khudayarov B A, Komilova K M, Turaev F Z, Aliyarov J A 2020 Int. J. Pres. Ves. Pip. 179 104034Google Scholar

    [46]

    林磊 2005 硕士学位论文 (西安: 西北工业大学)

    Lin L 2005 M. S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese)

    [47]

    Khudayarov B A, Komilova K M, Turaev F Z 2020 J. Nat. Gas. Sci. Eng. 75 103148Google Scholar

    [48]

    张亚峰 2014 硕士学位论文 (长沙: 国防科技大学)

    Zhang Y F 2014 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [49]

    温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2018 声子晶体 (北京: 国防工业出版社) 第207页

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y, 2009 Phononic Crystals (Beijing: National Defence Industry Press) p207 (in Chinese)

    [50]

    Liu J W, Yu D L, Zhang Z F, Shen H J, Wen J H 2019 Acta. Mech. Solida Sin. 32 173Google Scholar

    [51]

    Budenkov G A and Nedzvetskaya O V 2004 Russ. J. Nondestruct T-Engl. Tr. 40 99Google Scholar

    [52]

    胡兵, 郁殿龙 2019 第十三届全国振动理论及应用学术会议 中国西安, 11月9−12 第7页

    Hu B, Yu D L 2019 The 13th National Conference on Vibration Theory and Application Xi'an, China, November 9−12 p7 (in Chinese)

    [53]

    Ferràs D, Manso P A, Schleiss A J, Covas D I C 2016 Compos. Struct. 175 74Google Scholar

  • 图 1  布拉格声子晶体管路结构示意图 (a)无限周期单元; (b)基本周期单元

    Fig. 1.  Schematic diagram of Bragg phononic crystal pipeline structure: (a) Infinite periodic cell; (b) Basic periodic cell.

    图 2  未充液布拉格声子晶体管路的带隙特性 (a)能带结构; (b)振动频率响应曲线

    Fig. 2.  Band gap characteristics of the liquid-unfilled Bragg phononic crystal pipeline: (a) Band structure; (b) Flexural vibration FRF.

    图 3  充液布拉格声子晶体管路的带隙特性 (a)能带结构; (b)振动频率响应曲线

    Fig. 3.  Band gap characteristics of the liquid-filled Bragg phononic crystal pipeline: (a) Band structure; (b) Flexural vibration FRF.

    图 4  未充液和充液布拉格声子晶体管路弯曲振动频率响应 (a)未充液管路; (b) 充液管路

    Fig. 4.  Frequency response of flexural vibration of liquid-unfilled and liquid-filled Bragg phononic crystal pipeline: (a) liquid-unfilled pipe; (b) liquid-filled pipe.

    图 5  未充液和充液声子晶体管路不同频率处的速度幅值 (a)未充液管路; (b) 充液管路

    Fig. 5.  Displacement amplitude of liquid-unfilled and liquid-filled phononic crystal pipeline at different frequencies: (a) liquid-unfilled pipe; (b) liquid-filled pipe.

    图 6  ANSYS Workbench系统耦合配置方式

    Fig. 6.  Coupling configuration of ANSYS Workbench system.

    图 7  ANSYS中建立流固耦合管路模型

    Fig. 7.  Establishment of fluid-structure interaction pipeline model in ANSYS.

    图 8  管壁冲击脉冲响应及通过快速傅里叶变换得到的冲击模拟频域 (a) 管壁冲击时域; (b) 管壁冲击频域

    Fig. 8.  Pipe wall shock impulse response and shock simulation frequency domain obtained by fast Fourier transform: (a) Time domain of wall impact; (b) Frequency domain of wall impact.

    图 9  未充液与充液声子晶体管路冲击振动响应 (a)未充液管路; (b) 充液管路

    Fig. 9.  Shock vibration response of liquid-unfilled and liquid-filled phononic crystal pipeline: (a) liquid-unfilled pipe; (b) liquid-filled pipe.

    图 10  未充液和充液声子晶体管路不同时刻的速度幅值 (a)未充液管路; (b) 充液管路

    Fig. 10.  Velocity amplitude of liquid-unfilled and liquid-filled phononic crystal pipeline at different moments: (a) liquid-unfilled pipe; (b) liquid-filled pipe.

    图 11  流固耦合声子晶体管路在不同流速下的冲击振动响应 (a)流速为0 m/s; (b) 流速为10 m/s

    Fig. 11.  Shock vibration response of fluid-structure interaction phononic crystal pipeline at different velocities of fluid: (a) Flow velocity is 0 m/s; (b) Flow velocity is 10 m/s.

    图 12  流固耦合声子晶体管路出口处不同流速冲击振动响应

    Fig. 12.  Shock vibration response of the outlet of fluid-structure interaction phononic crystal pipeline at different velocities of fluid.

    图 13  冲击流体激励下 (a)结构钢管和(b)声子晶体管弯曲振动响应

    Fig. 13.  Flexural vibration response of (a) structural steel pipe and (b) phononic crystal pipe under shock fluid excitation.

    图 14  冲击流体激励下结构钢管与声子晶体管 (a) 进水口和 (b) 出水口处振动响应

    Fig. 14.  Vibration response at (a) inlet and (b) outlet of structural steel pipe and phononic crystal pipe under shock fluid excitation.

    表 1  管路材料参数

    Table 1.  Pipeline material parameters.

    材料名称杨氏模量/GPa密度/kg·m–3泊松比
    结构钢20078500.3
    环氧树脂4.3511800.3672
    下载: 导出CSV
  • [1]

    邵沛泽 2015 硕士学位论文 (北京: 北京工业大学)

    Shao P Z 2015 M. S. Thesis (Beijing: Beijing Institute of Technology) (in Chinese)

    [2]

    张阿漫, 戴绍仕 2011 流固耦合动力学 (北京: 国防工业出版社) 第3页

    Zhang A M, Dai S S 2011 Dynamics of Solid-fluid Interaction (Beijing: National Defense Industry Press) p3 (in Chinese)

    [3]

    马璐 2015 硕士学位论文 (兰州: 兰州理工大学)

    Ma L 2015 M.S. Thesis (Lanzhou: Lanzhou University of Technology) (in Chinese)

    [4]

    宋学官, 蔡林, 张华 2012 ANSYS流固耦合分析与工程实例 (北京: 中国水利水电出版社)第1页

    Song X G, Cai L, Zhang H 2012 ANSYS Fluid-structure Coupling Analysis and Engineering Example (Beijing: China Water & Power Press) p1 (in Chinese)

    [5]

    王海彦, 刘永刚 2015 ANSYS Fluent 流体数值计算方法与实例 (北京: 中国铁道出版社) 第2页

    Wang H Y, Liu Y G 2015 ANSYS Numerical Calculation Method and Example of ANSYS Fluent Fluid (Beijing: China Railway Press) p2 (in Chinese)

    [6]

    Chimakurthi S K, Reuss S, Tooley M, Scampoli S 2018 Eng. Comput.-Germany 34 385Google Scholar

    [7]

    Díaz-de-Anda A, Pimentel A, Flores J, Morales A, Gutiérrez L, Méndez-Sánchez R A 2005 J. Acoust. Soc. Am. 117 2814Google Scholar

    [8]

    Yang X D, Cui Q D, Qian Y J, Zhang W, Lim C W 2018 J. Appl. Mech. T ASME 85 0610121Google Scholar

    [9]

    Peiró-Torres M P, Castiñeira-Ibáñez S, Redondo J, Sánchez-Pérez J V 2019 Appl. Phys. Lett. 114 171901Google Scholar

    [10]

    Iqbal M, Jaya M M, Bursi O S, Kumar A, Ceravolo R 2020 Sci. Rep. 10 85Google Scholar

    [11]

    Sharma B, Sun C T 2016 J. Sandw. Struct. Mater. 18 50Google Scholar

    [12]

    Chen J S, Sharma B, Sun C T 2011 Compos. Struct. 93 2120Google Scholar

    [13]

    Chen J S, Sun C T 2011 J. Sandw. Struct. Mater. 13 391Google Scholar

    [14]

    Chen J S, Huang Y J 2016 J. Vib. Acoust. 138 0410091Google Scholar

    [15]

    Pai P F, Peng H, Jiang S 2014 Int. J. Mech. Sci. 79 195Google Scholar

    [16]

    Chen Y Y, Barnhart M V, Chen J K, Hu G K, Sun C T, Huang G L 2016 Compos. Struct. 136 358Google Scholar

    [17]

    Alamri S, Li B, Tan K T 2018 J. Appl. Phys. 123 95111Google Scholar

    [18]

    Li B, Liu Y, Tan K 2019 J. Sandw. Struct. Mater. 21 1880Google Scholar

    [19]

    Li Q Q, He Z C, Li E, Cheng A G 2018 Smart. Mater. Struct. 27 95015Google Scholar

    [20]

    Li Q Q, He Z C, Li E, Cheng A G 2019 J. Appl. Phys. 125 35104Google Scholar

    [21]

    Yu D L, Wang G, Liu Y Z, Wen J H, Qiu J 2006 Chin. Phys. 15 266Google Scholar

    [22]

    沈惠杰, 温激鸿, 郁殿龙, 温熙森 2009 物理学报 58 8357Google Scholar

    Shen H J, Wen J H, Yu D L, Wen X S 2009 Acta Phys. Sin. 58 8357Google Scholar

    [23]

    Shen H, Wen J, Yu D, Wen X 2009 J. Sound Vib. 328 57Google Scholar

    [24]

    Koo G K, Park Y S 1998 J. Sound Vib. 210 53Google Scholar

    [25]

    Sorokina S V, Ershova O A 2004 J. Sound Vib. 278 501Google Scholar

    [26]

    Sorokina S V, Ershova O A 2006 J. Sound Vib. 291 81Google Scholar

    [27]

    Sorokin S, Holst-Jensen O 2012 J. Vib. Acoust 134 41001Google Scholar

    [28]

    Yu D L, Wen J H, Zhao H G, Liu Y Z, Wen X S 2008 J. Sound Vib. 318 193Google Scholar

    [29]

    Yu D L, Wen J H, Zhao H G, Liu Y Z, Wen X S 2011 J. Vib. Acoust 133 14501Google Scholar

    [30]

    Yu D L, Wen J H, Shen H J, Wen X S 2012 Phys. Lett. A 376 3417Google Scholar

    [31]

    Yu D L, Du C Y, Shen H J, Liu J W, Wen J H 2017 Chin. Phys. Lett. 34 190Google Scholar

    [32]

    Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F, Wen J H 2018 Chin. Phys. B 27 285Google Scholar

    [33]

    Yu D L, Paidoussis M P, Shen H J, Wang L 2014 J. Appl. Mech.-T ASME 81 11001Google Scholar

    [34]

    Wen J H, Shen H J, Yu D L, Wen X S 2010 Chin. Phys. Lett. 27 133Google Scholar

    [35]

    Wei Z D, Li B R, Du J M, Yang G 2016 Chin. Phys. Lett. 33 68Google Scholar

    [36]

    刘东彦, 李发, 张建兴, 李宝仁 2016 机床与液压 44 74Google Scholar

    Liu D Y, Li F, Zhang J X, Li B R 2016 Mach. Tool & Hydr. 44 74Google Scholar

    [37]

    Shen H J, Wen J H, Yu D L, Asgari M, Wen X S 2013 J. Sound Vib. 332 4193Google Scholar

    [38]

    Shen H J, Wen J H, Yu D L, Yuan B, Wen X S 2014 J. Fluid. Struct. 46 134Google Scholar

    [39]

    Shen H J, Wen J H, Païdoussis M P, Yu D L, Asgari M, Wen X S 2012 Phys. Lett. A 376 3351Google Scholar

    [40]

    Shen H J, Païdoussis M P, Wen J H, Yu D L, Wen X S 2014 J. Sound Vib. 333 2735Google Scholar

    [41]

    Shen H J, Wen J H, Yu D L, Wen X S 2014 J. Vib. Control 21 3034Google Scholar

    [42]

    Liang F, Yang X D 2020 Appl. Math. Model. 77 522Google Scholar

    [43]

    尹志勇, 钟荣, 刘忠族 2006 舰船科学技术 28 23

    Yin Z Y, Zhong R, Liu Z Z 2006 Ship Sci. Tech. 28 23

    [44]

    Khudayarov B A, Komilova K M, Turaev F Z 2019 Int. J. Appl. Mech. 11 1950090Google Scholar

    [45]

    Khudayarov B A, Komilova K M, Turaev F Z, Aliyarov J A 2020 Int. J. Pres. Ves. Pip. 179 104034Google Scholar

    [46]

    林磊 2005 硕士学位论文 (西安: 西北工业大学)

    Lin L 2005 M. S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese)

    [47]

    Khudayarov B A, Komilova K M, Turaev F Z 2020 J. Nat. Gas. Sci. Eng. 75 103148Google Scholar

    [48]

    张亚峰 2014 硕士学位论文 (长沙: 国防科技大学)

    Zhang Y F 2014 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [49]

    温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2018 声子晶体 (北京: 国防工业出版社) 第207页

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y, 2009 Phononic Crystals (Beijing: National Defence Industry Press) p207 (in Chinese)

    [50]

    Liu J W, Yu D L, Zhang Z F, Shen H J, Wen J H 2019 Acta. Mech. Solida Sin. 32 173Google Scholar

    [51]

    Budenkov G A and Nedzvetskaya O V 2004 Russ. J. Nondestruct T-Engl. Tr. 40 99Google Scholar

    [52]

    胡兵, 郁殿龙 2019 第十三届全国振动理论及应用学术会议 中国西安, 11月9−12 第7页

    Hu B, Yu D L 2019 The 13th National Conference on Vibration Theory and Application Xi'an, China, November 9−12 p7 (in Chinese)

    [53]

    Ferràs D, Manso P A, Schleiss A J, Covas D I C 2016 Compos. Struct. 175 74Google Scholar

  • [1] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [2] 谭自豪, 孙小伟, 宋婷, 温晓东, 刘禧萱, 刘子江. 球形复合柱表面波声子晶体的带隙特性仿真. 物理学报, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [3] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [4] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制. 物理学报, 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [5] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [6] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [7] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [8] 刘启能, 刘沁. 固-固无限周期声子晶体中SH波全反射隧穿的谐振理论. 物理学报, 2013, 62(4): 044301. doi: 10.7498/aps.62.044301
    [9] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [10] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [11] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [12] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究. 物理学报, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [13] 沈惠杰, 温激鸿, 郁殿龙, 温熙森. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性. 物理学报, 2009, 58(12): 8357-8363. doi: 10.7498/aps.58.8357
    [14] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [15] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [16] 王 刚, 温激鸿, 刘耀宗, 郁殿龙, 温熙森. 大弹性常数差二维声子晶体带隙计算中的集中质量法. 物理学报, 2005, 54(3): 1247-1252. doi: 10.7498/aps.54.1247
    [17] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [18] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [19] 齐共金, 杨盛良, 白书欣, 赵 恂. 基于平面波算法的二维声子晶体带结构的研究. 物理学报, 2003, 52(3): 668-671. doi: 10.7498/aps.52.668
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  7226
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-19
  • 修回日期:  2020-06-12
  • 上网日期:  2020-09-27
  • 刊出日期:  2020-10-05

/

返回文章
返回