-
流固耦合管路系统广泛应用于各种装备中, 通常用来传递物质和能量或者动量. 由于流固耦合效应, 管壁在流体作用下易产生强烈的振动与噪声, 对装备安全性、隐蔽性产生严重影响, 甚至造成严重破坏. 流固耦合管路振动抑制需求迫切, 意义重大. 声子晶体可以利用其带隙特性抑制特定频率范围内弹性波的传播, 在减振降噪领域具有广泛的应用前景. 本文基于声子晶体理论, 研究了流固耦合条件下的布拉格声子晶体管路冲击振动传递特性. 将传递矩阵法和有限元法相结合, 计算了能带结构与带隙特性, 重点考虑了流固耦合效应下, 不同冲击激励条件下声子晶体管路振动特性, 分析了流固耦合对声子晶体管路振动传递特性的影响. 研究结果为流固耦合条件下管路系统的振动控制提供了技术参考.
Fluid-structure interaction pipeline systems are extensively adopted to transfer matter, energy and momentum, which are widely used in various fields. Due to the fluid-structure interaction effect, the pipe wall proves to produce strong vibration and noise under fluid action, which has a serious influence on the safety and concealment of the equipment, even leading to serious damages. Therefore, it is of great significance to study the vibration characteristics of fluid-structure interaction pipeline and methods to reduce the vibration of pipeline both in theory and in practice. Phononic crystal can suppress the propagation of elastic waves in a specific frequency range by their special band-gap characteristics, which have wide application prospects in the field of vibration and noise reduction. Especially, the band gap characteristics of phononic crystal pipeline used to design fluid-structure interaction pipeline system have been widely studied, thus providing a new technical approach to reducing the vibration and noise of the pipeline. In this paper, based on the theory of phononic crystal, the vibration transfer characteristics of the Bragg phononic crystal pipeline under fluid-structure interaction are studied. Combining the transfer matrix method and the finite element method, the band structure and band gap characteristics are calculated. Using the finite element method, the vibration characteristics of the phononic crystal pipeline under fluid-structure interaction effect, the shock excitation of pipe wall and the shock excitation of the fluid are considered. The influence of the fluid-structure interaction on the vibration transmission characteristics of the phononic crystal pipeline is also analyzed. The research results indicate that when the fluid velocity in the fluid-structure interaction pipeline system is small the Bragg phononic crystal pipeline has a good attenuation effect on the shock excitation of pipe wall in the band gap range, and that when the fluid velocity increases the fluid-structure interaction effect becomes significant, the attenuation effect becoming weaker. Bragg phononic crystal pipeline has a certain attenuation effect on the pipe wall vibration caused by the fluid shock excitation near the band gap. The research results are expected to be able to provide a technical reference for the vibration control of pipeline systems under fluid-structure interaction conditions. -
Keywords:
- fluid-structure interaction /
- phononic crystal /
- vibration band gap /
- shock vibration
[1] 邵沛泽 2015 硕士学位论文 (北京: 北京工业大学)
Shao P Z 2015 M. S. Thesis (Beijing: Beijing Institute of Technology) (in Chinese)
[2] 张阿漫, 戴绍仕 2011 流固耦合动力学 (北京: 国防工业出版社) 第3页
Zhang A M, Dai S S 2011 Dynamics of Solid-fluid Interaction (Beijing: National Defense Industry Press) p3 (in Chinese)
[3] 马璐 2015 硕士学位论文 (兰州: 兰州理工大学)
Ma L 2015 M.S. Thesis (Lanzhou: Lanzhou University of Technology) (in Chinese)
[4] 宋学官, 蔡林, 张华 2012 ANSYS流固耦合分析与工程实例 (北京: 中国水利水电出版社)第1页
Song X G, Cai L, Zhang H 2012 ANSYS Fluid-structure Coupling Analysis and Engineering Example (Beijing: China Water & Power Press) p1 (in Chinese)
[5] 王海彦, 刘永刚 2015 ANSYS Fluent 流体数值计算方法与实例 (北京: 中国铁道出版社) 第2页
Wang H Y, Liu Y G 2015 ANSYS Numerical Calculation Method and Example of ANSYS Fluent Fluid (Beijing: China Railway Press) p2 (in Chinese)
[6] Chimakurthi S K, Reuss S, Tooley M, Scampoli S 2018 Eng. Comput.-Germany 34 385Google Scholar
[7] Díaz-de-Anda A, Pimentel A, Flores J, Morales A, Gutiérrez L, Méndez-Sánchez R A 2005 J. Acoust. Soc. Am. 117 2814Google Scholar
[8] Yang X D, Cui Q D, Qian Y J, Zhang W, Lim C W 2018 J. Appl. Mech. T ASME 85 0610121Google Scholar
[9] Peiró-Torres M P, Castiñeira-Ibáñez S, Redondo J, Sánchez-Pérez J V 2019 Appl. Phys. Lett. 114 171901Google Scholar
[10] Iqbal M, Jaya M M, Bursi O S, Kumar A, Ceravolo R 2020 Sci. Rep. 10 85Google Scholar
[11] Sharma B, Sun C T 2016 J. Sandw. Struct. Mater. 18 50Google Scholar
[12] Chen J S, Sharma B, Sun C T 2011 Compos. Struct. 93 2120Google Scholar
[13] Chen J S, Sun C T 2011 J. Sandw. Struct. Mater. 13 391Google Scholar
[14] Chen J S, Huang Y J 2016 J. Vib. Acoust. 138 0410091Google Scholar
[15] Pai P F, Peng H, Jiang S 2014 Int. J. Mech. Sci. 79 195Google Scholar
[16] Chen Y Y, Barnhart M V, Chen J K, Hu G K, Sun C T, Huang G L 2016 Compos. Struct. 136 358Google Scholar
[17] Alamri S, Li B, Tan K T 2018 J. Appl. Phys. 123 95111Google Scholar
[18] Li B, Liu Y, Tan K 2019 J. Sandw. Struct. Mater. 21 1880Google Scholar
[19] Li Q Q, He Z C, Li E, Cheng A G 2018 Smart. Mater. Struct. 27 95015Google Scholar
[20] Li Q Q, He Z C, Li E, Cheng A G 2019 J. Appl. Phys. 125 35104Google Scholar
[21] Yu D L, Wang G, Liu Y Z, Wen J H, Qiu J 2006 Chin. Phys. 15 266Google Scholar
[22] 沈惠杰, 温激鸿, 郁殿龙, 温熙森 2009 物理学报 58 8357Google Scholar
Shen H J, Wen J H, Yu D L, Wen X S 2009 Acta Phys. Sin. 58 8357Google Scholar
[23] Shen H, Wen J, Yu D, Wen X 2009 J. Sound Vib. 328 57Google Scholar
[24] Koo G K, Park Y S 1998 J. Sound Vib. 210 53Google Scholar
[25] Sorokina S V, Ershova O A 2004 J. Sound Vib. 278 501Google Scholar
[26] Sorokina S V, Ershova O A 2006 J. Sound Vib. 291 81Google Scholar
[27] Sorokin S, Holst-Jensen O 2012 J. Vib. Acoust 134 41001Google Scholar
[28] Yu D L, Wen J H, Zhao H G, Liu Y Z, Wen X S 2008 J. Sound Vib. 318 193Google Scholar
[29] Yu D L, Wen J H, Zhao H G, Liu Y Z, Wen X S 2011 J. Vib. Acoust 133 14501Google Scholar
[30] Yu D L, Wen J H, Shen H J, Wen X S 2012 Phys. Lett. A 376 3417Google Scholar
[31] Yu D L, Du C Y, Shen H J, Liu J W, Wen J H 2017 Chin. Phys. Lett. 34 190Google Scholar
[32] Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F, Wen J H 2018 Chin. Phys. B 27 285Google Scholar
[33] Yu D L, Paidoussis M P, Shen H J, Wang L 2014 J. Appl. Mech.-T ASME 81 11001Google Scholar
[34] Wen J H, Shen H J, Yu D L, Wen X S 2010 Chin. Phys. Lett. 27 133Google Scholar
[35] Wei Z D, Li B R, Du J M, Yang G 2016 Chin. Phys. Lett. 33 68Google Scholar
[36] 刘东彦, 李发, 张建兴, 李宝仁 2016 机床与液压 44 74Google Scholar
Liu D Y, Li F, Zhang J X, Li B R 2016 Mach. Tool & Hydr. 44 74Google Scholar
[37] Shen H J, Wen J H, Yu D L, Asgari M, Wen X S 2013 J. Sound Vib. 332 4193Google Scholar
[38] Shen H J, Wen J H, Yu D L, Yuan B, Wen X S 2014 J. Fluid. Struct. 46 134Google Scholar
[39] Shen H J, Wen J H, Païdoussis M P, Yu D L, Asgari M, Wen X S 2012 Phys. Lett. A 376 3351Google Scholar
[40] Shen H J, Païdoussis M P, Wen J H, Yu D L, Wen X S 2014 J. Sound Vib. 333 2735Google Scholar
[41] Shen H J, Wen J H, Yu D L, Wen X S 2014 J. Vib. Control 21 3034Google Scholar
[42] Liang F, Yang X D 2020 Appl. Math. Model. 77 522Google Scholar
[43] 尹志勇, 钟荣, 刘忠族 2006 舰船科学技术 28 23
Yin Z Y, Zhong R, Liu Z Z 2006 Ship Sci. Tech. 28 23
[44] Khudayarov B A, Komilova K M, Turaev F Z 2019 Int. J. Appl. Mech. 11 1950090Google Scholar
[45] Khudayarov B A, Komilova K M, Turaev F Z, Aliyarov J A 2020 Int. J. Pres. Ves. Pip. 179 104034Google Scholar
[46] 林磊 2005 硕士学位论文 (西安: 西北工业大学)
Lin L 2005 M. S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese)
[47] Khudayarov B A, Komilova K M, Turaev F Z 2020 J. Nat. Gas. Sci. Eng. 75 103148Google Scholar
[48] 张亚峰 2014 硕士学位论文 (长沙: 国防科技大学)
Zhang Y F 2014 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)
[49] 温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2018 声子晶体 (北京: 国防工业出版社) 第207页
Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y, 2009 Phononic Crystals (Beijing: National Defence Industry Press) p207 (in Chinese)
[50] Liu J W, Yu D L, Zhang Z F, Shen H J, Wen J H 2019 Acta. Mech. Solida Sin. 32 173Google Scholar
[51] Budenkov G A and Nedzvetskaya O V 2004 Russ. J. Nondestruct T-Engl. Tr. 40 99Google Scholar
[52] 胡兵, 郁殿龙 2019 第十三届全国振动理论及应用学术会议 中国西安, 11月9−12 第7页
Hu B, Yu D L 2019 The 13th National Conference on Vibration Theory and Application Xi'an, China, November 9−12 p7 (in Chinese)
[53] Ferràs D, Manso P A, Schleiss A J, Covas D I C 2016 Compos. Struct. 175 74Google Scholar
-
表 1 管路材料参数
Table 1. Pipeline material parameters.
材料名称 杨氏模量/GPa 密度/kg·m–3 泊松比 结构钢 200 7850 0.3 环氧树脂 4.35 1180 0.3672 -
[1] 邵沛泽 2015 硕士学位论文 (北京: 北京工业大学)
Shao P Z 2015 M. S. Thesis (Beijing: Beijing Institute of Technology) (in Chinese)
[2] 张阿漫, 戴绍仕 2011 流固耦合动力学 (北京: 国防工业出版社) 第3页
Zhang A M, Dai S S 2011 Dynamics of Solid-fluid Interaction (Beijing: National Defense Industry Press) p3 (in Chinese)
[3] 马璐 2015 硕士学位论文 (兰州: 兰州理工大学)
Ma L 2015 M.S. Thesis (Lanzhou: Lanzhou University of Technology) (in Chinese)
[4] 宋学官, 蔡林, 张华 2012 ANSYS流固耦合分析与工程实例 (北京: 中国水利水电出版社)第1页
Song X G, Cai L, Zhang H 2012 ANSYS Fluid-structure Coupling Analysis and Engineering Example (Beijing: China Water & Power Press) p1 (in Chinese)
[5] 王海彦, 刘永刚 2015 ANSYS Fluent 流体数值计算方法与实例 (北京: 中国铁道出版社) 第2页
Wang H Y, Liu Y G 2015 ANSYS Numerical Calculation Method and Example of ANSYS Fluent Fluid (Beijing: China Railway Press) p2 (in Chinese)
[6] Chimakurthi S K, Reuss S, Tooley M, Scampoli S 2018 Eng. Comput.-Germany 34 385Google Scholar
[7] Díaz-de-Anda A, Pimentel A, Flores J, Morales A, Gutiérrez L, Méndez-Sánchez R A 2005 J. Acoust. Soc. Am. 117 2814Google Scholar
[8] Yang X D, Cui Q D, Qian Y J, Zhang W, Lim C W 2018 J. Appl. Mech. T ASME 85 0610121Google Scholar
[9] Peiró-Torres M P, Castiñeira-Ibáñez S, Redondo J, Sánchez-Pérez J V 2019 Appl. Phys. Lett. 114 171901Google Scholar
[10] Iqbal M, Jaya M M, Bursi O S, Kumar A, Ceravolo R 2020 Sci. Rep. 10 85Google Scholar
[11] Sharma B, Sun C T 2016 J. Sandw. Struct. Mater. 18 50Google Scholar
[12] Chen J S, Sharma B, Sun C T 2011 Compos. Struct. 93 2120Google Scholar
[13] Chen J S, Sun C T 2011 J. Sandw. Struct. Mater. 13 391Google Scholar
[14] Chen J S, Huang Y J 2016 J. Vib. Acoust. 138 0410091Google Scholar
[15] Pai P F, Peng H, Jiang S 2014 Int. J. Mech. Sci. 79 195Google Scholar
[16] Chen Y Y, Barnhart M V, Chen J K, Hu G K, Sun C T, Huang G L 2016 Compos. Struct. 136 358Google Scholar
[17] Alamri S, Li B, Tan K T 2018 J. Appl. Phys. 123 95111Google Scholar
[18] Li B, Liu Y, Tan K 2019 J. Sandw. Struct. Mater. 21 1880Google Scholar
[19] Li Q Q, He Z C, Li E, Cheng A G 2018 Smart. Mater. Struct. 27 95015Google Scholar
[20] Li Q Q, He Z C, Li E, Cheng A G 2019 J. Appl. Phys. 125 35104Google Scholar
[21] Yu D L, Wang G, Liu Y Z, Wen J H, Qiu J 2006 Chin. Phys. 15 266Google Scholar
[22] 沈惠杰, 温激鸿, 郁殿龙, 温熙森 2009 物理学报 58 8357Google Scholar
Shen H J, Wen J H, Yu D L, Wen X S 2009 Acta Phys. Sin. 58 8357Google Scholar
[23] Shen H, Wen J, Yu D, Wen X 2009 J. Sound Vib. 328 57Google Scholar
[24] Koo G K, Park Y S 1998 J. Sound Vib. 210 53Google Scholar
[25] Sorokina S V, Ershova O A 2004 J. Sound Vib. 278 501Google Scholar
[26] Sorokina S V, Ershova O A 2006 J. Sound Vib. 291 81Google Scholar
[27] Sorokin S, Holst-Jensen O 2012 J. Vib. Acoust 134 41001Google Scholar
[28] Yu D L, Wen J H, Zhao H G, Liu Y Z, Wen X S 2008 J. Sound Vib. 318 193Google Scholar
[29] Yu D L, Wen J H, Zhao H G, Liu Y Z, Wen X S 2011 J. Vib. Acoust 133 14501Google Scholar
[30] Yu D L, Wen J H, Shen H J, Wen X S 2012 Phys. Lett. A 376 3417Google Scholar
[31] Yu D L, Du C Y, Shen H J, Liu J W, Wen J H 2017 Chin. Phys. Lett. 34 190Google Scholar
[32] Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F, Wen J H 2018 Chin. Phys. B 27 285Google Scholar
[33] Yu D L, Paidoussis M P, Shen H J, Wang L 2014 J. Appl. Mech.-T ASME 81 11001Google Scholar
[34] Wen J H, Shen H J, Yu D L, Wen X S 2010 Chin. Phys. Lett. 27 133Google Scholar
[35] Wei Z D, Li B R, Du J M, Yang G 2016 Chin. Phys. Lett. 33 68Google Scholar
[36] 刘东彦, 李发, 张建兴, 李宝仁 2016 机床与液压 44 74Google Scholar
Liu D Y, Li F, Zhang J X, Li B R 2016 Mach. Tool & Hydr. 44 74Google Scholar
[37] Shen H J, Wen J H, Yu D L, Asgari M, Wen X S 2013 J. Sound Vib. 332 4193Google Scholar
[38] Shen H J, Wen J H, Yu D L, Yuan B, Wen X S 2014 J. Fluid. Struct. 46 134Google Scholar
[39] Shen H J, Wen J H, Païdoussis M P, Yu D L, Asgari M, Wen X S 2012 Phys. Lett. A 376 3351Google Scholar
[40] Shen H J, Païdoussis M P, Wen J H, Yu D L, Wen X S 2014 J. Sound Vib. 333 2735Google Scholar
[41] Shen H J, Wen J H, Yu D L, Wen X S 2014 J. Vib. Control 21 3034Google Scholar
[42] Liang F, Yang X D 2020 Appl. Math. Model. 77 522Google Scholar
[43] 尹志勇, 钟荣, 刘忠族 2006 舰船科学技术 28 23
Yin Z Y, Zhong R, Liu Z Z 2006 Ship Sci. Tech. 28 23
[44] Khudayarov B A, Komilova K M, Turaev F Z 2019 Int. J. Appl. Mech. 11 1950090Google Scholar
[45] Khudayarov B A, Komilova K M, Turaev F Z, Aliyarov J A 2020 Int. J. Pres. Ves. Pip. 179 104034Google Scholar
[46] 林磊 2005 硕士学位论文 (西安: 西北工业大学)
Lin L 2005 M. S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese)
[47] Khudayarov B A, Komilova K M, Turaev F Z 2020 J. Nat. Gas. Sci. Eng. 75 103148Google Scholar
[48] 张亚峰 2014 硕士学位论文 (长沙: 国防科技大学)
Zhang Y F 2014 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)
[49] 温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2018 声子晶体 (北京: 国防工业出版社) 第207页
Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y, 2009 Phononic Crystals (Beijing: National Defence Industry Press) p207 (in Chinese)
[50] Liu J W, Yu D L, Zhang Z F, Shen H J, Wen J H 2019 Acta. Mech. Solida Sin. 32 173Google Scholar
[51] Budenkov G A and Nedzvetskaya O V 2004 Russ. J. Nondestruct T-Engl. Tr. 40 99Google Scholar
[52] 胡兵, 郁殿龙 2019 第十三届全国振动理论及应用学术会议 中国西安, 11月9−12 第7页
Hu B, Yu D L 2019 The 13th National Conference on Vibration Theory and Application Xi'an, China, November 9−12 p7 (in Chinese)
[53] Ferràs D, Manso P A, Schleiss A J, Covas D I C 2016 Compos. Struct. 175 74Google Scholar
计量
- 文章访问数: 7467
- PDF下载量: 156
- 被引次数: 0