搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类声子晶体结构对超声塑料焊接工具横向振动的抑制

赵甜甜 林书玉 段祎林

引用本文:
Citation:

类声子晶体结构对超声塑料焊接工具横向振动的抑制

赵甜甜, 林书玉, 段祎林

Suppression of lateral vibration in rectangular ultrasonic plastic welding tool based on phononic crystal structure

Zhao Tian-Tian, Lin Shu-Yu, Duan Yi-Lin
PDF
导出引用
  • 利用声子晶体的带隙理论以及耦合振动理论对大尺寸矩形超声塑料焊接工具的耦合振动进行了研究.在实际工程应用中,大尺寸工具的横向振动将严重导致工具头辐射面位移不均匀,影响系统的焊接质量及工作效率.为提高其工作效率,改善工具头辐射面位移的均匀程度,利用类声子晶体结构对大尺寸超声塑料焊接工具的横向振动进行抑制,分析并得出了类声子晶体结构的横向振动带隙,同时分析了工具头横向振动未抑制与抑制后其辐射面位移的大小与均匀程度.研究表明,通过合理设计类声子晶体的结构及尺寸,可以有效抑制超声塑料焊接工具的横向振动.不但改善了焊接工具辐射面纵向振动位移的均匀程度,而且提高了焊接工具的纵向振动位移幅度.
    Ultrasonic welding is one of the main applications of high-power ultrasound and is used in the automotive industry and aerospace. Transducers and tool are important parts of the ultrasonic welding system. Different tools are required for different welding objects. For larger plastic welded parts, it is necessary to weld them with large-sized welding tools. Due to the large size of the welding tool, under the excitation of the transducer, the tool will produce a coupling effect of longitudinal vibration and lateral vibration. Lateral vibration will cause the radiation surface of the tool to be non-uniformly displaced, and the working efficiency and welding results of the welding system will also be affected. So, in this paper, the phononic crystal bandgap theory and coupling vibration theory are used to study the coupled vibration of large-sized rectangular plastic ultrasonic welding tools. In order to improve the work efficiency and radiation surface's displacement uniformity of the tool, the phononic crystal structure is used to suppress the lateral vibration of the large-sized plastic ultrasonic welding tool, and the lateral vibration band gap of the phononic crystal structure is calculated. The longitudinal resonance frequency of the system is designed in the band gap range of the lateral vibration of the tool. So the lateral vibration of the tool can be effectively suppressed. The longitudinal vibration displacements on the radiation surface of the rectangular tool before and after vibration suppression are analyzed and compared with each other. The vibration mode of the ultrasonic welding system is simulated by the Comsol Multiphysics finite element software. The large-scaled tool with phononic crystal structure has a radiation surface displacement compared with the tool without phononic crystal structure, and the results show that the radiation surface displacement with phononic crystal structure will increase and tend to be uniform, greatly optimize the welding effect, improve the working efficiency of the welding system, and meet the needs of practical engineering. It is concluded that the longitudinal resonance frequency of the ultrasonic plastic welding system within the lateral vibration bandgap on the phononic crystal structure can not only suppress the lateral vibration, but also make the longitudinal displacement of the radiation surface more uniform and larger. Therefore, the work efficiency is greatly improved.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474192,11674206,11874253)资助的课题.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474192, 11674206, 11874253).
    [1]

    Lin S Y, Zhang F C, Guo X W 1991 J. Acoust. 16 91 (in Chinese) [林书玉, 张福成, 郭孝武 1991 声学学报 16 91]

    [2]

    Lin S Y, Zhang F C 1992 J. Acoust. 17 451 (in Chinese) [林书玉, 张福成 1992 声学学报 17 451]

    [3]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defense Industry Press) p196 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社)第196页]

    [4]

    Gripp J A B, L Góes C S, Heuss O, Scinocca F 2015 Smart Mater. Struct. 24 125017

    [5]

    Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302 (in Chinese) [张思文, 吴九汇 2013 物理学报 62 134302]

    [6]

    Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979

    [7]

    Shu H S, Zhang F, Liu S G, Gao E W, Li S D 2014 J. Vib. Shock 33 147 (in Chinese) [舒海生, 张法, 刘少刚, 高恩武, 李世丹 2014 振动与冲击 33 147]

    [8]

    Chen S B, Han X Y, Yu D L, Wen J H 2010 Acta Phys. Sin. 59 387 (in Chinese) [陈圣兵, 韩小云, 郁殿龙, 温激鸿 2010 物理学报 59 387]

    [9]

    Yu D L, Liu Y Z, Qiu J, Wang G, Wen J H, Zhao H G 2005 J. Vib. Shock 24 92 (in Chinese) [郁殿龙, 刘耀宗, 邱静王刚, 温激鸿, 赵宏刚 2005 振动与冲击 24 92]

    [10]

    Zhang H, Wen J H, Xiao Y, Wang G, Wen X S 2015 J. Sound Vib. 343 104

    [11]

    Wen J H,Wang G, Yu D L, Zhao H G, Liu Y Z, Wen X S 2007 Sci. China 37 1126 (in Chinese) [温激鸿, 王刚, 郁殿龙, 赵宏刚, 刘耀宗, 温熙森 2007 中国科学 37 1126]

    [12]

    Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979

    [13]

    Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids Struct. 45 4203

    [14]

    Behrens S, Moheimani S O R, Fleming A J 2003 J. Sound Vib. 266 929

    [15]

    Yang M Y, Wu L C, Tseng J Y 2008 Phys. Lett. A 372 4730

    [16]

    Lin S Y, Xian X J 2014 Shaanxi Normal Univ. 42 31 (in Chinese) [林书玉, 鲜小军 2014 陕西师范大学学报 42 31]

    [17]

    Tang Y F, Lin S Y 2016 Acta Phys. Sin. 65 164202 (in Chinese) [唐一璠, 林书玉 2016 物理学报 65 164202]

    [18]

    Lin S Y, Zhang F C, Yuan W J 1990 Acoust. Electron. Engin. 20 16 (in Chinese) [林书玉, 张福成, 员维俭 1990 声学与电子工程 4 16]

    [19]

    Lin S Y, Zhang F C 1992 Technol. Acoust. 11 24 (in Chinese) [林书玉, 张福成 1992 声学技术 11 24]

    [20]

    Zhang H, Xiao Y, Wen J H, Yu D L, Wen X S 2016 Appl. Phys. Lett. 108 1734

    [21]

    Wang G, Chen S B, Wen J H 2011 Smart. Mater. Struct. 20 015026

    [22]

    Cao Y J, Dong C H, Zhou P Q 2006 Acta Phys. Sin. 55 6470 (in Chinese) [曹永军, 董纯红, 周培勤 2006 物理学报 55 6470]

    [23]

    Wen J H 2005 Ph. D. Dissertation (Beijing: National Defense University) (in Chinese) [温激鸿 2005 博士学位论文 (北京: 国防科技大学)]

    [24]

    Chen A L 2008 Ph. D. Dissertation (Beijing: Jiaotong University) (in Chinese) [陈阿丽 2008 博士学位论文(北京: 交通大学)]

    [25]

    Guo F D 2015 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese) [郭凤丹 2015 硕士学位论文 (北京: 北京交通大学)]

    [26]

    Jensen J S, Sigmund O, Thomsen J J, Bendse M P 2002 15th Nordic Seminar on Computational Mechanics Aalborg, October 18-19, 2002 p63

  • [1]

    Lin S Y, Zhang F C, Guo X W 1991 J. Acoust. 16 91 (in Chinese) [林书玉, 张福成, 郭孝武 1991 声学学报 16 91]

    [2]

    Lin S Y, Zhang F C 1992 J. Acoust. 17 451 (in Chinese) [林书玉, 张福成 1992 声学学报 17 451]

    [3]

    Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defense Industry Press) p196 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社)第196页]

    [4]

    Gripp J A B, L Góes C S, Heuss O, Scinocca F 2015 Smart Mater. Struct. 24 125017

    [5]

    Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302 (in Chinese) [张思文, 吴九汇 2013 物理学报 62 134302]

    [6]

    Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979

    [7]

    Shu H S, Zhang F, Liu S G, Gao E W, Li S D 2014 J. Vib. Shock 33 147 (in Chinese) [舒海生, 张法, 刘少刚, 高恩武, 李世丹 2014 振动与冲击 33 147]

    [8]

    Chen S B, Han X Y, Yu D L, Wen J H 2010 Acta Phys. Sin. 59 387 (in Chinese) [陈圣兵, 韩小云, 郁殿龙, 温激鸿 2010 物理学报 59 387]

    [9]

    Yu D L, Liu Y Z, Qiu J, Wang G, Wen J H, Zhao H G 2005 J. Vib. Shock 24 92 (in Chinese) [郁殿龙, 刘耀宗, 邱静王刚, 温激鸿, 赵宏刚 2005 振动与冲击 24 92]

    [10]

    Zhang H, Wen J H, Xiao Y, Wang G, Wen X S 2015 J. Sound Vib. 343 104

    [11]

    Wen J H,Wang G, Yu D L, Zhao H G, Liu Y Z, Wen X S 2007 Sci. China 37 1126 (in Chinese) [温激鸿, 王刚, 郁殿龙, 赵宏刚, 刘耀宗, 温熙森 2007 中国科学 37 1126]

    [12]

    Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979

    [13]

    Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids Struct. 45 4203

    [14]

    Behrens S, Moheimani S O R, Fleming A J 2003 J. Sound Vib. 266 929

    [15]

    Yang M Y, Wu L C, Tseng J Y 2008 Phys. Lett. A 372 4730

    [16]

    Lin S Y, Xian X J 2014 Shaanxi Normal Univ. 42 31 (in Chinese) [林书玉, 鲜小军 2014 陕西师范大学学报 42 31]

    [17]

    Tang Y F, Lin S Y 2016 Acta Phys. Sin. 65 164202 (in Chinese) [唐一璠, 林书玉 2016 物理学报 65 164202]

    [18]

    Lin S Y, Zhang F C, Yuan W J 1990 Acoust. Electron. Engin. 20 16 (in Chinese) [林书玉, 张福成, 员维俭 1990 声学与电子工程 4 16]

    [19]

    Lin S Y, Zhang F C 1992 Technol. Acoust. 11 24 (in Chinese) [林书玉, 张福成 1992 声学技术 11 24]

    [20]

    Zhang H, Xiao Y, Wen J H, Yu D L, Wen X S 2016 Appl. Phys. Lett. 108 1734

    [21]

    Wang G, Chen S B, Wen J H 2011 Smart. Mater. Struct. 20 015026

    [22]

    Cao Y J, Dong C H, Zhou P Q 2006 Acta Phys. Sin. 55 6470 (in Chinese) [曹永军, 董纯红, 周培勤 2006 物理学报 55 6470]

    [23]

    Wen J H 2005 Ph. D. Dissertation (Beijing: National Defense University) (in Chinese) [温激鸿 2005 博士学位论文 (北京: 国防科技大学)]

    [24]

    Chen A L 2008 Ph. D. Dissertation (Beijing: Jiaotong University) (in Chinese) [陈阿丽 2008 博士学位论文(北京: 交通大学)]

    [25]

    Guo F D 2015 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese) [郭凤丹 2015 硕士学位论文 (北京: 北京交通大学)]

    [26]

    Jensen J S, Sigmund O, Thomsen J J, Bendse M P 2002 15th Nordic Seminar on Computational Mechanics Aalborg, October 18-19, 2002 p63

  • [1] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计. 物理学报, 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [2] 左馨怡, 雷照康, 武耀蓉, 王成会. 黏弹性介质包裹的液体腔内球状泡群耦合振动模型. 物理学报, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [3] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟. 物理学报, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [4] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [5] 胡兵, 郁殿龙, 刘江伟, 朱付磊, 张振方. 流固耦合声子晶体管路冲击振动特性研究. 物理学报, 2020, 69(19): 194301. doi: 10.7498/aps.69.20200414
    [6] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [7] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [8] 陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜. 薄膜与Helmholtz腔耦合结构低频带隙. 物理学报, 2019, 68(21): 214208. doi: 10.7498/aps.68.20190673
    [9] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [10] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [11] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [12] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [13] 王成会, 莫润阳, 胡静, 陈时. 球状泡群内气泡的耦合振动. 物理学报, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [14] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [15] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [16] 沈惠杰, 温激鸿, 郁殿龙, 温熙森. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性. 物理学报, 2009, 58(12): 8357-8363. doi: 10.7498/aps.58.8357
    [17] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [18] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [19] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [20] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
计量
  • 文章访问数:  6202
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-12
  • 修回日期:  2018-09-30
  • 刊出日期:  2019-11-20

/

返回文章
返回