搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声子晶体中的多重拓扑相

陈泽国 吴莹

引用本文:
Citation:

声子晶体中的多重拓扑相

陈泽国, 吴莹

Multiple topological phases in phononic crystals

Chen Ze-Guo, Wu Ying
PDF
导出引用
  • 研究了圆环型波导依照蜂窝结构排列的声子晶体系统中的拓扑相变.利用晶格结构的点群对称性实现赝自旋,并在圆环中引入旋转气流来打破时间反演对称性.通过紧束缚近似模型计算的解析结果表明,没有引入气流时,调节几何参数,系统存在普通绝缘体和量子自旋霍尔效应绝缘体两个相;引入气流后,可以实现新的时间反演对称性破缺的量子自旋霍尔效应相,而增大气流强度,则可以实现量子反常霍尔效应相.这三个拓扑相可以通过自旋陈数来分类.通过有限元软件模拟了多个系统中边界态的传播,发现不同于量子自旋霍尔效应相,量子反常霍尔相系统的表面只支持一种自旋的边界态,并且它无需时间反演对称性保护.
    We report a new topological phononic crystal in a ring-waveguide acoustic system. In the previous reports on topological phononic crystals, there are two types of topological phases:quantum Hall phase and quantum spin Hall phase. A key point in achieving quantum Hall insulator is to break the time-reversal (TR) symmetry, and for quantum spin Hall insulator, the construction of pseudo-spin is necessary. We build such pseudo-spin states under particular crystalline symmetry (C6v) and then break the degeneracy of the pseudo-spin states by introducing airflow to the ring. We study the topology evolution by changing both the geometric parameters of the unit cell and the strength of the applied airflow. We find that the system exhibits three phases:quantum spin Hall phase, conventional insulator phase and a new quantum anomalous Hall phase.The quantum anomalous Hall phase is first observed in phononics and cannot be simply classified by the Chern number or Z2 index since it results from TR-broken quantum spin Hall phase. We develop a tight-binding model to capture the essential physics of the topological phase transition. The analytical calculation based on the tight-binding model shows that the spin Chern number is a topological invariant to classify the bandgap. The quantum anomalous Hall insulator has a spin Chern number C±=(1,0) indicating the edge state is pseudo-spin orientation dependent and robust against TR-broken impurities.We also perform finite-element numerical simulations to verify the topological differences of the bandgaps. At the interface between a conventional insulator and a quantum anomalous Hall insulator, pseudo-spin dependent one-way propagation interface states are clearly observed, which are strikingly deferent from chiral edge states resulting from quantum Hall insulator and pairs of helical edge states resulting from quantum spin Hall insulator. Moreover, our pseudo-spin dependent edge state is robust against TR-broken impurities, which also sheds lights on spintronic devices.
      通信作者: 吴莹, ying.wu@kaust.edu.sa
    • 基金项目: 沙特阿卜杜拉国王科技大学基本科研经费(批准号:BAS/1/1626-01-01)资助的课题.
      Corresponding author: Wu Ying, ying.wu@kaust.edu.sa
    • Funds: Project supported by King Abdullah University of Science and Technology Baseline Research Fund (Grant No. BAS/1/1626-01-01).
    [1]

    John S 1987 Phys. Rev. Lett. 58 2486

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [4]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [5]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Qi X L, Wu Y S, Zhang S C 2006 Phys. Rev. B 74 085308

    [9]

    Prodan E 2009 Phys. Rev. B 80 125327

    [10]

    Kitagawa T, Berg E, Rudner M, Demler E 2010 Phys. Rev. B 82 235114

    [11]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [12]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [13]

    Moore J E 2010 Nature 464 194

    [14]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [15]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905

    [16]

    Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [17]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y,Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [18]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photon. 8 821

    [19]

    Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, Zhang B 2015 Phys. Rev. Lett. 114 114301

    [20]

    Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [21]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901

    [22]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516

    [23]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [24]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. USA 113 4924

    [25]

    Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303

    [26]

    Xu L, Wang H X, Xu Y D, Chen H Y, Jiang J H 2016 Opt. Express 24 18059

    [27]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [28]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016

    [29]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021

    [30]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [31]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802

    [32]

    Li H, Sheng L, Shen R, Shao L B, Wang B, Sheng D N, Xing D Y 2013 Phys. Rev. Lett. 110 266802

    [33]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [34]

    Alexandradinata A, Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 113 116403

    [35]

    Liu C X, Zhang R X, van Leeuwen B K 2014 Phys. Rev. B 90 085304

    [36]

    Sakoda K 2012 Opt. Express 20 3898

    [37]

    Liu C X, Qi X L, Zhang H, Dai X, Fang Z, Zhang S C 2010 Phys. Rev. B 82 045122

    [38]

    Chen Z G, Mei J, Sun X C, Zhang X, Zhao J, Wu Y 2017 Phys. Rev. A 95 043827

  • [1]

    John S 1987 Phys. Rev. Lett. 58 2486

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494

    [4]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [5]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [6]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [7]

    König M, Wiedmann S, Brne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766

    [8]

    Qi X L, Wu Y S, Zhang S C 2006 Phys. Rev. B 74 085308

    [9]

    Prodan E 2009 Phys. Rev. B 80 125327

    [10]

    Kitagawa T, Berg E, Rudner M, Demler E 2010 Phys. Rev. B 82 235114

    [11]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [12]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [13]

    Moore J E 2010 Nature 464 194

    [14]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [15]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2008 Phys. Rev. Lett. 100 013905

    [16]

    Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233

    [17]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y,Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196

    [18]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photon. 8 821

    [19]

    Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, Zhang B 2015 Phys. Rev. Lett. 114 114301

    [20]

    Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240

    [21]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901

    [22]

    Fleury R, Sounas D L, Sieck C F, Haberman M R, Alù A 2014 Science 343 516

    [23]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901

    [24]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. USA 113 4924

    [25]

    Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303

    [26]

    Xu L, Wang H X, Xu Y D, Chen H Y, Jiang J H 2016 Opt. Express 24 18059

    [27]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124

    [28]

    Ni X, He C, Sun X C, Liu X P, Lu M H, Feng L, Chen Y F 2015 New J. Phys. 17 053016

    [29]

    Chen Z G, Wu Y 2016 Phys. Rev. Appl. 5 054021

    [30]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015

    [31]

    Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802

    [32]

    Li H, Sheng L, Shen R, Shao L B, Wang B, Sheng D N, Xing D Y 2013 Phys. Rev. Lett. 110 266802

    [33]

    Chen Z G, Ni X, Wu Y, He C, Sun X C, Zheng L Y, Lu M H, Chen Y F 2014 Sci. Rep. 4 4613

    [34]

    Alexandradinata A, Fang C, Gilbert M J, Bernevig B A 2014 Phys. Rev. Lett. 113 116403

    [35]

    Liu C X, Zhang R X, van Leeuwen B K 2014 Phys. Rev. B 90 085304

    [36]

    Sakoda K 2012 Opt. Express 20 3898

    [37]

    Liu C X, Qi X L, Zhang H, Dai X, Fang Z, Zhang S C 2010 Phys. Rev. B 82 045122

    [38]

    Chen Z G, Mei J, Sun X C, Zhang X, Zhao J, Wu Y 2017 Phys. Rev. A 95 043827

  • [1] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性研究. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211932
    [2] 张蔚曦, 李勇, 田昌海, 佘彦超. 具有大磁晶各向异性能的单层BaPb的室温量子反常霍尔效应. 物理学报, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [3] 王靖. 手征马约拉纳费米子. 物理学报, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [4] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [5] 田源, 葛浩, 卢明辉, 陈延峰. 声学超构材料及其物理效应的研究进展. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850
    [6] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [7] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [8] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [9] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [10] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [11] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [12] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [13] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [14] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [15] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [16] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响. 物理学报, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [17] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [18] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [19] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [20] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
计量
  • 文章访问数:  4365
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-31
  • 修回日期:  2017-10-27
  • 刊出日期:  2017-11-05

声子晶体中的多重拓扑相

  • 1. 阿卜杜拉国王科技大学计算机电子和数学学院, 图瓦 23955-6900, 沙特阿拉伯
  • 通信作者: 吴莹, ying.wu@kaust.edu.sa
    基金项目: 沙特阿卜杜拉国王科技大学基本科研经费(批准号:BAS/1/1626-01-01)资助的课题.

摘要: 研究了圆环型波导依照蜂窝结构排列的声子晶体系统中的拓扑相变.利用晶格结构的点群对称性实现赝自旋,并在圆环中引入旋转气流来打破时间反演对称性.通过紧束缚近似模型计算的解析结果表明,没有引入气流时,调节几何参数,系统存在普通绝缘体和量子自旋霍尔效应绝缘体两个相;引入气流后,可以实现新的时间反演对称性破缺的量子自旋霍尔效应相,而增大气流强度,则可以实现量子反常霍尔效应相.这三个拓扑相可以通过自旋陈数来分类.通过有限元软件模拟了多个系统中边界态的传播,发现不同于量子自旋霍尔效应相,量子反常霍尔相系统的表面只支持一种自旋的边界态,并且它无需时间反演对称性保护.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回