搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超构材料中的光学量子自旋霍尔效应

龙洋 任捷 江海涛 孙勇 陈鸿

引用本文:
Citation:

超构材料中的光学量子自旋霍尔效应

龙洋, 任捷, 江海涛, 孙勇, 陈鸿

Quantum spin Hall effect in metamaterials

Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong
PDF
导出引用
  • 电子的量子自旋霍尔效应的发现推进了当今凝聚态物理学的发展,它是一种电子自旋依赖的具有量子行为的输运效应.近年来,大量的理论和实验研究表明,描述电磁波场运动规律的麦克斯韦方程组内禀了光的量子自旋霍尔效应,存在于界面的倏逝波表现出强烈的自旋与动量关联性.得益于新兴的光学材料:超构材料(metamaterials)的发展,不仅能够任意设定光学参数,同时也能引入很多复杂的自旋-轨道耦合机理,让我们能够更加清晰地了解和验证其中的物理机理.本文对超构材料中量子自旋霍尔效应做了简要的介绍,内容主要包括真空中光的量子自旋霍尔效应的物理本质、电单负和磁单负超构材料能带反转导致的不同拓扑相的界面态、拓扑电路系统中光量子自旋霍尔效应等.
    Quantum spin Hall effect (QSHE) of electrons has improved the development of condensed matter researchnowadays, which describesone kind of spin-dependent quantum transport behavior in solid state. Recently, a variety of theoretical and experimental work has revealed that Maxwell equations, which is formulated 150 years ago and ultimately describeproperties of light, can exhibit an intrinsic quantum spin Hall effect of light. The evanescent wave supported on the interface among different media behaves strong spin-momentum locking. With the rapid development of new optics materials, metamaterials, we can not only adjust the optical parameters of media arbitrarily, but also introduce a lot of complex spin-orbit interaction mechanism. Based on metamaterials, the essential physical mechanism behind quantum spin Hall effect of light can be understood deeply and verified easily. The purpose of this review is to give a brief introduction to quantum spin Hall effect of light in metamaterials. These include, for example, the physical essence of QSHE of light, the topological interface mode between permittivity negative and permeability negative metamaterials, QSHE in topological circuits.
      通信作者: 任捷, xonics@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11775159)和上海市自然科学基金(批准号:17ZR1443800)资助的课题.
      Corresponding author: Ren Jie, xonics@tongji.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11775159) and the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1443800).
    [1]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [2]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, Macdonald A H 2004 Phys. Rev. Lett. 92 126603

    [3]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348

    [4]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [5]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [6]

    Hasan M Z, Kane C L 2010 Rev. Modern Phys. 82 3045

    [7]

    Qi X L, Zhang S C 2011 Rev. Modern Phys. 83 1057

    [8]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [9]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [10]

    Fang K, Yu Z, Fan S 2012 Nature Photon. 6 782

    [11]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, Macdonald A H, Shvets G 2012 Nature Mater. 12 233

    [12]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nature Photon. 8 821

    [13]

    Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448

    [14]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nature Photon. 2 748

    [15]

    Belinfante F J 1940 Physica 7 449

    [16]

    Berry M V 2009 J. Opt. A: Pure and Applied Optics 11 094001

    [17]

    Bliokh K Y, Dressel J, Nori F 2014 New J. Phys. 16 093037

    [18]

    Bliokh K Y, Bekshaev A Y, Nori F 2014 Nature Commun 5 3300

    [19]

    Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001

    [20]

    Stone M 2015 Science 348 1432

    [21]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796

    [22]

    Aiello A, Banzer P, Neugebauer M, Leuchs G 2015 Nature Photon. 9 789

    [23]

    Bliokh K Y, Nori F 2015 Phys. Reports 592 1

    [24]

    Van Mechelen T, Jacob Z 2016 Optica 3 118

    [25]

    Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X 5 011039

    [26]

    Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys 15 033026

    [27]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67

    [28]

    Rodríguez-Fortuño F J, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328

    [29]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405

    [30]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724

    [31]

    Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [32]

    Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J,Filonov D S, Voroshilov P M, Belov P A, Zayats A V 2014 Nature Commun. 5 3226

    [33]

    Guo Z, Jiang H, Long Y, Yu K, Ren J, Xue C, Chen H 2017 Sci. Reports 7 7742

    [34]

    Tan W, Sun Y, Chen H, Shen S Q 2014 Sci. Reports 4 3842

    [35]

    Shi X, Xue C, Jiang H, Chen H 2016 Opt. Express 24 18580

    [36]

    Silveirinha M G 2015 Phys. Rev. B 92 125153

    [37]

    Silveirinha M G 2016 Phys. Rev. B 93 075110

    [38]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications (New York: John Wiley & Sons)

    [39]

    Weeks C, Franz M 2010 Phys. Rev. B 82 085310

    [40]

    Goldman N, Urban D F, Bercioux D 2011 Phys. Rev. A 83 063601

    [41]

    Zhu W W, Hou S S, Long Y, Chen H, Ren J 2017 arXiv:1710.07268 [cond mat.mes hall]

    [42]

    Mecklenburg M, Regan B C 2011 Phys. Rev. Lett. 106 116803

    [43]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Chen Z 2015 Nature Commun. 6 6272

    [44]

    Ningyuan J, Owens C, Sommer A, Schuster D, Simon J

  • [1]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [2]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, Macdonald A H 2004 Phys. Rev. Lett. 92 126603

    [3]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348

    [4]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [5]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [6]

    Hasan M Z, Kane C L 2010 Rev. Modern Phys. 82 3045

    [7]

    Qi X L, Zhang S C 2011 Rev. Modern Phys. 83 1057

    [8]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [9]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [10]

    Fang K, Yu Z, Fan S 2012 Nature Photon. 6 782

    [11]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, Macdonald A H, Shvets G 2012 Nature Mater. 12 233

    [12]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nature Photon. 8 821

    [13]

    Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448

    [14]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nature Photon. 2 748

    [15]

    Belinfante F J 1940 Physica 7 449

    [16]

    Berry M V 2009 J. Opt. A: Pure and Applied Optics 11 094001

    [17]

    Bliokh K Y, Dressel J, Nori F 2014 New J. Phys. 16 093037

    [18]

    Bliokh K Y, Bekshaev A Y, Nori F 2014 Nature Commun 5 3300

    [19]

    Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001

    [20]

    Stone M 2015 Science 348 1432

    [21]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796

    [22]

    Aiello A, Banzer P, Neugebauer M, Leuchs G 2015 Nature Photon. 9 789

    [23]

    Bliokh K Y, Nori F 2015 Phys. Reports 592 1

    [24]

    Van Mechelen T, Jacob Z 2016 Optica 3 118

    [25]

    Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X 5 011039

    [26]

    Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys 15 033026

    [27]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67

    [28]

    Rodríguez-Fortuño F J, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328

    [29]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405

    [30]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724

    [31]

    Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [32]

    Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J,Filonov D S, Voroshilov P M, Belov P A, Zayats A V 2014 Nature Commun. 5 3226

    [33]

    Guo Z, Jiang H, Long Y, Yu K, Ren J, Xue C, Chen H 2017 Sci. Reports 7 7742

    [34]

    Tan W, Sun Y, Chen H, Shen S Q 2014 Sci. Reports 4 3842

    [35]

    Shi X, Xue C, Jiang H, Chen H 2016 Opt. Express 24 18580

    [36]

    Silveirinha M G 2015 Phys. Rev. B 92 125153

    [37]

    Silveirinha M G 2016 Phys. Rev. B 93 075110

    [38]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications (New York: John Wiley & Sons)

    [39]

    Weeks C, Franz M 2010 Phys. Rev. B 82 085310

    [40]

    Goldman N, Urban D F, Bercioux D 2011 Phys. Rev. A 83 063601

    [41]

    Zhu W W, Hou S S, Long Y, Chen H, Ren J 2017 arXiv:1710.07268 [cond mat.mes hall]

    [42]

    Mecklenburg M, Regan B C 2011 Phys. Rev. Lett. 106 116803

    [43]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Chen Z 2015 Nature Commun. 6 6272

    [44]

    Ningyuan J, Owens C, Sommer A, Schuster D, Simon J

  • [1] 郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印. 二维各向异性SSH模型的拓扑性质研究. 物理学报, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [2] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展. 物理学报, 2022, (): . doi: 10.7498/aps.71.20220100
    [3] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [4] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, 2020, 69(15): 156201. doi: 10.7498/aps.69.20200542
    [5] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [6] 林月钗, 刘仿, 黄翊东. 基于超构材料的Cherenkov辐射. 物理学报, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [7] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [8] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] 杨超, 陈澍. 淬火动力学中的拓扑不变量. 物理学报, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [10] 刘娜, 胡边, 魏鸿鹏, 刘红. 锯齿型石墨烯纳米窄带中量子霍尔体系的电场调控. 物理学报, 2018, 67(11): 117301. doi: 10.7498/aps.67.20180249
    [11] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [12] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [13] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [14] 王海啸, 徐林, 蒋建华. Dirac光子晶体. 物理学报, 2017, 66(22): 220302. doi: 10.7498/aps.66.220302
    [15] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [16] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [17] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [18] 马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚. 超构天线:原理、器件与应用. 物理学报, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [19] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [20] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应. 物理学报, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
计量
  • 文章访问数:  5059
  • PDF下载量:  817
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-20
  • 修回日期:  2017-10-27
  • 刊出日期:  2017-11-05

超构材料中的光学量子自旋霍尔效应

  • 1. 同济大学物理科学与工程学院, 声子学与热能科学中心, 先进微结构材料教育部重点实验室, 上海 200092
  • 通信作者: 任捷, xonics@tongji.edu.cn
    基金项目: 国家自然科学基金(批准号:11775159)和上海市自然科学基金(批准号:17ZR1443800)资助的课题.

摘要: 电子的量子自旋霍尔效应的发现推进了当今凝聚态物理学的发展,它是一种电子自旋依赖的具有量子行为的输运效应.近年来,大量的理论和实验研究表明,描述电磁波场运动规律的麦克斯韦方程组内禀了光的量子自旋霍尔效应,存在于界面的倏逝波表现出强烈的自旋与动量关联性.得益于新兴的光学材料:超构材料(metamaterials)的发展,不仅能够任意设定光学参数,同时也能引入很多复杂的自旋-轨道耦合机理,让我们能够更加清晰地了解和验证其中的物理机理.本文对超构材料中量子自旋霍尔效应做了简要的介绍,内容主要包括真空中光的量子自旋霍尔效应的物理本质、电单负和磁单负超构材料能带反转导致的不同拓扑相的界面态、拓扑电路系统中光量子自旋霍尔效应等.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回