-
电子的量子自旋霍尔效应的发现推进了当今凝聚态物理学的发展,它是一种电子自旋依赖的具有量子行为的输运效应.近年来,大量的理论和实验研究表明,描述电磁波场运动规律的麦克斯韦方程组内禀了光的量子自旋霍尔效应,存在于界面的倏逝波表现出强烈的自旋与动量关联性.得益于新兴的光学材料:超构材料(metamaterials)的发展,不仅能够任意设定光学参数,同时也能引入很多复杂的自旋-轨道耦合机理,让我们能够更加清晰地了解和验证其中的物理机理.本文对超构材料中量子自旋霍尔效应做了简要的介绍,内容主要包括真空中光的量子自旋霍尔效应的物理本质、电单负和磁单负超构材料能带反转导致的不同拓扑相的界面态、拓扑电路系统中光量子自旋霍尔效应等.Quantum spin Hall effect (QSHE) of electrons has improved the development of condensed matter researchnowadays, which describesone kind of spin-dependent quantum transport behavior in solid state. Recently, a variety of theoretical and experimental work has revealed that Maxwell equations, which is formulated 150 years ago and ultimately describeproperties of light, can exhibit an intrinsic quantum spin Hall effect of light. The evanescent wave supported on the interface among different media behaves strong spin-momentum locking. With the rapid development of new optics materials, metamaterials, we can not only adjust the optical parameters of media arbitrarily, but also introduce a lot of complex spin-orbit interaction mechanism. Based on metamaterials, the essential physical mechanism behind quantum spin Hall effect of light can be understood deeply and verified easily. The purpose of this review is to give a brief introduction to quantum spin Hall effect of light in metamaterials. These include, for example, the physical essence of QSHE of light, the topological interface mode between permittivity negative and permeability negative metamaterials, QSHE in topological circuits.
-
Keywords:
- quantum spin Hall effect /
- metamaterials /
- topological transition
[1] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405
[2] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, Macdonald A H 2004 Phys. Rev. Lett. 92 126603
[3] Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348
[4] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
[5] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[6] Hasan M Z, Kane C L 2010 Rev. Modern Phys. 82 3045
[7] Qi X L, Zhang S C 2011 Rev. Modern Phys. 83 1057
[8] Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904
[9] Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772
[10] Fang K, Yu Z, Fan S 2012 Nature Photon. 6 782
[11] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, Macdonald A H, Shvets G 2012 Nature Mater. 12 233
[12] Lu L, Joannopoulos J D, Soljačić M 2014 Nature Photon. 8 821
[13] Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448
[14] Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nature Photon. 2 748
[15] Belinfante F J 1940 Physica 7 449
[16] Berry M V 2009 J. Opt. A: Pure and Applied Optics 11 094001
[17] Bliokh K Y, Dressel J, Nori F 2014 New J. Phys. 16 093037
[18] Bliokh K Y, Bekshaev A Y, Nori F 2014 Nature Commun 5 3300
[19] Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001
[20] Stone M 2015 Science 348 1432
[21] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796
[22] Aiello A, Banzer P, Neugebauer M, Leuchs G 2015 Nature Photon. 9 789
[23] Bliokh K Y, Nori F 2015 Phys. Reports 592 1
[24] Van Mechelen T, Jacob Z 2016 Optica 3 118
[25] Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X 5 011039
[26] Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys 15 033026
[27] Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67
[28] Rodríguez-Fortuño F J, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328
[29] Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405
[30] Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724
[31] Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331
[32] Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J,Filonov D S, Voroshilov P M, Belov P A, Zayats A V 2014 Nature Commun. 5 3226
[33] Guo Z, Jiang H, Long Y, Yu K, Ren J, Xue C, Chen H 2017 Sci. Reports 7 7742
[34] Tan W, Sun Y, Chen H, Shen S Q 2014 Sci. Reports 4 3842
[35] Shi X, Xue C, Jiang H, Chen H 2016 Opt. Express 24 18580
[36] Silveirinha M G 2015 Phys. Rev. B 92 125153
[37] Silveirinha M G 2016 Phys. Rev. B 93 075110
[38] Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications (New York: John Wiley & Sons)
[39] Weeks C, Franz M 2010 Phys. Rev. B 82 085310
[40] Goldman N, Urban D F, Bercioux D 2011 Phys. Rev. A 83 063601
[41] Zhu W W, Hou S S, Long Y, Chen H, Ren J 2017 arXiv:1710.07268 [cond mat.mes hall]
[42] Mecklenburg M, Regan B C 2011 Phys. Rev. Lett. 106 116803
[43] Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Chen Z 2015 Nature Commun. 6 6272
[44] Ningyuan J, Owens C, Sommer A, Schuster D, Simon J
-
[1] Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405
[2] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, Macdonald A H 2004 Phys. Rev. Lett. 92 126603
[3] Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348
[4] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
[5] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[6] Hasan M Z, Kane C L 2010 Rev. Modern Phys. 82 3045
[7] Qi X L, Zhang S C 2011 Rev. Modern Phys. 83 1057
[8] Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904
[9] Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772
[10] Fang K, Yu Z, Fan S 2012 Nature Photon. 6 782
[11] Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, Macdonald A H, Shvets G 2012 Nature Mater. 12 233
[12] Lu L, Joannopoulos J D, Soljačić M 2014 Nature Photon. 8 821
[13] Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448
[14] Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nature Photon. 2 748
[15] Belinfante F J 1940 Physica 7 449
[16] Berry M V 2009 J. Opt. A: Pure and Applied Optics 11 094001
[17] Bliokh K Y, Dressel J, Nori F 2014 New J. Phys. 16 093037
[18] Bliokh K Y, Bekshaev A Y, Nori F 2014 Nature Commun 5 3300
[19] Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001
[20] Stone M 2015 Science 348 1432
[21] Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796
[22] Aiello A, Banzer P, Neugebauer M, Leuchs G 2015 Nature Photon. 9 789
[23] Bliokh K Y, Nori F 2015 Phys. Reports 592 1
[24] Van Mechelen T, Jacob Z 2016 Optica 3 118
[25] Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X 5 011039
[26] Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys 15 033026
[27] Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67
[28] Rodríguez-Fortuño F J, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328
[29] Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405
[30] Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724
[31] Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331
[32] Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J,Filonov D S, Voroshilov P M, Belov P A, Zayats A V 2014 Nature Commun. 5 3226
[33] Guo Z, Jiang H, Long Y, Yu K, Ren J, Xue C, Chen H 2017 Sci. Reports 7 7742
[34] Tan W, Sun Y, Chen H, Shen S Q 2014 Sci. Reports 4 3842
[35] Shi X, Xue C, Jiang H, Chen H 2016 Opt. Express 24 18580
[36] Silveirinha M G 2015 Phys. Rev. B 92 125153
[37] Silveirinha M G 2016 Phys. Rev. B 93 075110
[38] Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications (New York: John Wiley & Sons)
[39] Weeks C, Franz M 2010 Phys. Rev. B 82 085310
[40] Goldman N, Urban D F, Bercioux D 2011 Phys. Rev. A 83 063601
[41] Zhu W W, Hou S S, Long Y, Chen H, Ren J 2017 arXiv:1710.07268 [cond mat.mes hall]
[42] Mecklenburg M, Regan B C 2011 Phys. Rev. Lett. 106 116803
[43] Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Chen Z 2015 Nature Commun. 6 6272
[44] Ningyuan J, Owens C, Sommer A, Schuster D, Simon J
计量
- 文章访问数: 10254
- PDF下载量: 972
- 被引次数: 0