搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金熔体中的动力学拓扑相变

秦海蓉 侯翊洁 杨昆 靳灿灿 吕勇军

引用本文:
Citation:

非晶合金熔体中的动力学拓扑相变

秦海蓉, 侯翊洁, 杨昆, 靳灿灿, 吕勇军

Topological phase transition in metallic glass formers

Qin Hai-Rong, Hou Yi-Jie, Yang Kun, Jin Cancan, Lü Yong-Jun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 非晶态合金在非晶态形成过程中呈现出复杂的动力学行为,认识非晶态合金及其过冷熔体的动力学规律是非晶态研究领域的重要内容。从拓扑序的角度去重新审视非晶态系统的动力学行为为深入理解非晶态及非晶态转变的物理本质提供了一个全新的视角。本文采用分子动力学模拟方法研究了CuZr合金熔体在非晶态转变中的微观动力学特征。模拟发现,在原子的位移矢量场中出现大量的涡旋结构,涡旋形成率在非晶态转变温度附近出现了不连续降低。涡旋伴随着高应变事件的发生,两者的形成率之间存在特征比值,而在涡旋态转变前后该比值加倍。分析认为,观察到的涡旋态转变具有拓扑相变的特征,即在非晶合金熔体的位移矢量场中存在拓扑相变。涡旋及相伴产生的高应变事件与非晶合金熔体中的各种次级弛豫有着密切的关系。本文为理解和揭示非晶态转变过程中复杂动力学行为的物理本质提供了一个新的切入点。
    Metallic glass-forming systems exhibit complex dynamic behaviors during the glass transition. Understanding the dynamic nature of metallic glasses and supercooled liquids is a crucial issue in the study of glassy physics. Topological order provides a novel perspective for re-examining the dynamics of glassy systems and elucidating the physical essence of the glassy state and glass transition. In this study, the microscopic dynamics of CuZr melts across the glass transition are investigated using molecular dynamics simulations. The single-particle dynamics in the supercooled CuZr melt is characterized by the random jump motions of atoms following long-term caging periods. To capture these dynamics, the displacement vector field is constructed based on the spatiotemporal distribution of these jump events. The simulation results reveal the presence of numerous vortex structures in the displacement vector field. Notably, the vortex formation rate, which is defined as the number of vortices generated per unit time, exhibits a sharp drop near the glass transition temperature. The probability distribution of vortex formation rates displays a bimodal pattern across the drop, indicating the coexistence of two distinct dynamical states associated with vortex formation. Multiple high-strain events are observed surrounding these vortices. It is found that the two vortex states across the transition exhibit markedly different characteristic ratios of vortices to high-strain events (1:4 vs 1:8), suggesting a change in the coupling strength between vortex formation and high-strain activity. The high-strain events predominantly form in the regions between positive and negative vortices, and the specific quantitative relationship between vortices and high-strain events indirectly reflects the presence of strongly interacting vortex-antivortex pairs in the melt. The abrupt doubling of the vortex-to-high-strain-event ratio during the vortex state transition implies that this transition is not merely a sudden change in vortex formation rate but also an enhancement of interactions between vortex-antivortex pairs, representing a change in global topological properties. These findings demonstrate that the vortex transition exhibits characteristics of a topological phase transition, thereby predicting the existence of a topological phase transition in the displacement vector field of metallic glass-forming systems. It is further speculated that vortices and high-strain events are associated with multiple secondary relaxation processes. This study provides a new perspective for understanding the dynamics of glass-forming systems and the glass transition.
  • [1]

    Klement W, Willens R, Duwez P 1960 Nature 187 869.

    [2]

    Bernal J D 1959 Nature 183 141.

    [3]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379.

    [4]

    Finney J L 1970 Proc. Roy. Soc. Lond. A 319 479.

    [5]

    Miracle D B 2004 Nat. Mater. 3 697.

    [6]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419.

    [7]

    Frank F C 1952 Proc. R. Soc. Lond. A 215 43.

    [8]

    Hirata A, Kang L J, Fujita T, Klumov B, Matsue K, Kotani M, Yavari A R, Chen M W 2013 Science 341 376.

    [9]

    Li M Z 2017 Acta Phys. Sin. 66 176107 (in Chinese) [李茂枝 2017 物理学报 66 176107]

    [10]

    Jiang Y Q, Peng P 2018 Acta Phys. Sin. 67 132101 (in Chinese) [蒋元祺,彭平2018 物理学报 67 132101]

    [11]

    Wu C, Huang Y J, Shen J 2013 Chin. Phys. Lett. 30, 106102.

    [12]

    Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J, Liu C T 2010 Phys. Rev. Lett. 105 155501.

    [13]

    Lü Y J, Entel P 2011 Phys. Rev. B 84 104203.

    [14]

    Wu Z W, Li M Z, Wang W H, Liu K X 2015 Nature Commun. 6 6053.

    [15]

    Neophytou A, Chakrabarti D, Sciortino F 2002 Nat. Phys. 18 1248.

    [16]

    Berezinskii V L 1971 Sov. Phys. JETP 32 493.

    [17]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181.

    [18]

    Kosterlitz J M 2016 Rep. Prog. Phys. 79 026001.

    [19]

    DiDonna B A, Lubensky T C 2005 Phys. Rev. E 72 066619.

    [20]

    Del Gado E, Ilg P, Kroeger M, Oettinger H C 2008 Phys. Rev. Lett. 101 095501.

    [21]

    Dasgupta R, Hentschel H G E, Procaccia I 2012 Phys. Rev. Lett. 109 255502.

    [22]

    Wu Z W, Chen Y, Wang W H, Kob W, Xu L 2023 Nature Commun. 14 2955.

    [23]

    Lü Y J, Guo C C, Huang H S, Gao J A, Qin H R, Wang W H 2021 Acta Mater. 211 116873.

    [24]

    Lü Y J, Qin H R, Guo C C 2021 Phys. Rev. B 104 224103.

    [25]

    Tang M B, Zhao D Q, Pan M X, Wang W H 2004 Chin. Phys. Lett. 21 901.

    [26]

    Mendelev M I, Kramer M J, Ott R T, Sordelet D J, Yagodin D, Popel P 2009 Philos. Mag. 89 967.

    [27]

    Nosé S 1984 J. Chem. Phys. 81 511.

    [28]

    Hoover W G 1985 Phys. Rev. A 31 1695.

    [29]

    Plimpton S 1995 J. Comp. Phys. 117 1.

    [30]

    Chou C F, Jin A J, Hui S W, Huang C C, Ho J T 1998 Science 280 1424.

    [31]

    Mirkovic J, Savel’ev S E, Sugahara E, Kadowaki K 2001 Phys. Rev. Lett. 86 886.

    [32]

    Kim S, Hu C R, Andrews M J 2004 Phys. Rev. B 69 094521.

  • [1] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态. 物理学报, doi: 10.7498/aps.74.20240933
    [2] 古燕, 王智鹏, 陆展鹏. 准晶势调制的一维p波超导体中的拓扑量子相变. 物理学报, doi: 10.7498/aps.74.20250137
    [3] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, doi: 10.7498/aps.71.20220796
    [4] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, doi: 10.7498/aps.69.20191962
    [5] 雍康乐, 闫家伟, 唐善发, 张蓉竹. 彗差和球差对涡旋光束斜程传输特性的影响. 物理学报, doi: 10.7498/aps.69.20191254
    [6] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响. 物理学报, doi: 10.7498/aps.69.20200059
    [7] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, doi: 10.7498/aps.69.20200415
    [8] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, doi: 10.7498/aps.69.20191648
    [9] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, doi: 10.7498/aps.69.20191454
    [10] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模. 物理学报, doi: 10.7498/aps.68.20181698
    [11] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, doi: 10.7498/aps.66.224102
    [12] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, doi: 10.7498/aps.66.178101
    [13] 王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, doi: 10.7498/aps.66.176103
    [14] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, doi: 10.7498/aps.66.224502
    [15] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, doi: 10.7498/aps.66.224301
    [16] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, doi: 10.7498/aps.63.247501
    [17] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化. 物理学报, doi: 10.7498/aps.56.999
    [18] 李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣. Jackiw-Pi模型的新涡旋解. 物理学报, doi: 10.7498/aps.56.6178
    [19] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解. 物理学报, doi: 10.7498/aps.56.3022
    [20] 王 莉, 王庆峰, 王喜庆, 吕百达. 两束离轴高斯光束干涉场中的横向光涡旋. 物理学报, doi: 10.7498/aps.56.201
计量
  • 文章访问数:  38
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-11

/

返回文章
返回