搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期驱动系统中由次近邻跃迁诱导的非厄米拓扑相

包茜茜 郭刚峰 谭磊 刘伍明

引用本文:
Citation:

周期驱动系统中由次近邻跃迁诱导的非厄米拓扑相

包茜茜, 郭刚峰, 谭磊, 刘伍明

Topological phase induced by long range hopping in non-Hermitian Floquet system

BAO Xixi, GUO Gangfeng, TAN Lei, LIU Wuming
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 我们的工作研究了周期驱动下含次近邻跃迁的非厄米系统的拓扑相变行为。通过结合广义布里渊区理论与Floquet拓扑不变量方法,发现周期驱动不仅改变了零模的拓扑相边界,还诱导出独特的π模能隙,形成由零模相和π模相共同表征的复合拓扑相结构。次近邻跃迁的引入可以诱导大拓扑数,但与静态体系不同,周期驱动下大拓扑数仅在特定参数区间出现。即随着次近邻跃迁强度的增大,大拓扑数相反而消失,表明动态体系具有区别于平衡态的非单调调控特性。此外,次近邻跃迁相位的引入,能够改变拓扑相的边界,这为实验上实现拓扑态的可控调制提供了新思路。这些结果揭示了长程跃迁与外部周期驱动对拓扑性质的独特影响,为非厄米体系中长程与动态调控的交叉研究奠定了理论基础。
    Our work constructs a non-Hermitian system with long range hopping under periodic driving. The Hamiltonian has chiral symmetry, which implies that the topological invariant can be defined. Based on the non-Bloch band theory and the Floquet method, relevant operators and topological number can be defined, providing quantitative approaches for studying topological properties. For example, by calculating the non-Bloch time-evolution factor, the Floquet operator, etc., it is found that the topological invariant is determined by the change of the phase of $U^{+}_{\epsilon=0,\pi}(\beta)$ as it moves along the generalized Brillouin zone, corresponding to the emergence of quasi-energy zero mode and $\pi$ mode.
    Results show that the topological structure of the static system can be affected by periodic driving significantly. The topological phase boundary of the zero mode can be changed. When there is no periodic driving, there is no $\pi$ mode in the energy spectrum. After the introduction of periodic driving, a gap appears at the quasi-energy $\epsilon=\pi$, inducing a non-trivial $\pi$-mode phase and enriching the topological phase diagram. Further, the next nearest neighbor hopping has a unique effect in this system. It can induce large topological numbers. However, different from the static system, large topological numbers only appear in specific parameter intervals under periodic driving. As the strength of the next nearest neighbor hopping increases, the large topological number phase disappears instead, reflecting the non-monotonic regulation characteristics of the Floquet system. In addition, the introduction of the phase of the next nearest neighbor hopping can change the topological phase boundary, providing new ideas for experimentally regulating topological states.
    This research is of significance in the field of topological phase transitions in non-Hermitian systems. Theoretically, it reveals the synergistic effect of long-range hopping and periodic driving, and improves the theoretical framework for the cross-research of long-range and dynamic regulation in non-Hermitian systems. From an application perspective, it provides theoretical support for experimentally realizing the controllable modulation of topological states, which is helpful to promote the development of fields such as low energy consumption electronic devices and topological quantum computing.
  • [1]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88035005

    [2]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88021004

    [3]

    Asbóth J, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators, vol. 919

    [4]

    Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters, vol. 174

    [5]

    Wang J H, Tao Y L, Xu Y 2022 Chin. Phys. Lett. 39010301

    [6]

    Wang X R, Guo C X, Du Q, Kou S P 2020 Chin. Phys. Lett. 37117303

    [7]

    Yi Y F 2024 Chinese Physics B 33060302

    [8]

    Liu T, Wang Y G 2024 Chinese Physics B 33030303

    [9]

    Esaki K, Sato M, Hasebe K, Kohmoto M 2011 Phys. Rev. B 84205128

    [10]

    Hu Y C, Hughes T L 2011 Phys. Rev. B 84153101

    [11]

    Zhu B, Lü R, Chen S 2014 Phys. Rev. A 89062102

    [12]

    Jin L, Song Z 2019 Phys. Rev. B 99081103

    [13]

    Chen Y, Zhai H 2018 Phys. Rev. B 98245130

    [14]

    Lang L J, Wang Y, Wang H, Chong Y D 2018 Phys. Rev. B 98094307

    [15]

    Deng T S, Yi W 2019 Phys. Rev. B 100035102

    [16]

    Kawabata K, Higashikawa S, Gong Z, Ashida Y, Ueda M 2019 Nature Communications 10

    [17]

    Liu T, Zhang Y R, Ai Q, Gong Z, Kawabata K, Ueda M, Nori F 2019 Phys. Rev. Lett. 122076801

    [18]

    Lee C H, Li L, Gong J 2019 Phys. Rev. Lett. 123016805

    [19]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121026808

    [20]

    Guo G F, Bao X X, Tan L 2021 New Journal of Physics 23123007

    [21]

    Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97052115

    [22]

    Chen C, Qi L, Xing Y, Cui W X, Zhang S, Wang H F 2021 New Journal of Physics 23123008

    [23]

    Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Science China Physics, Mechanics & Astronomy 63267062

    [24]

    Pi J, Wang C, Liu Y C, Yan Y 2025 Phys. Rev. B 111165407

    [25]

    Wang Z, He L 2025 Phys. Rev. B 111 L100305

    [26]

    Zheng Y Q, Li S Z, Li Z 2025 Phys. Rev. B 111104204

    [27]

    Xiong Y 2018 Journal of Physics Communications 2035043

    [28]

    Li L, Lee C H, Mu S, Gong J 2020 Nature Communications 11

    [29]

    Denner M M, Skurativska A, Schindler F, Fischer M H, Thomale R, Bzdušek T, Neupert T 2021 Nature Communications 12

    [30]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121086803

    [31]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123066404

    [32]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125126402

    [33]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125226402

    [34]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124086801

    [35]

    Zhu W, Teo W X, Li L, Gong J 2021 Phys. Rev. B 103195414

    [36]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123246801

    [37]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115

    [38]

    He P, Huang Z H 2020 Phys. Rev. A 102062201

    [39]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nature Physics 16

    [40]

    Zhang X, Gong J 2020 Phys. Rev. B 101045415

    [41]

    Zhou L 2021 Phys. Rev. Research 3033184

    [42]

    Ke H, Zhang J M, Huo L, Zhao W L 2024 Chinese Physics B 33050507

    [43]

    Cao Y, Li Y, Yang X 2021 Phys. Rev. B 103075126

    [44]

    Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O, Arimondo E 2007 Phys. Rev. Lett. 99220403

    [45]

    Eckardt A 2017 Rev. Mod. Phys. 89011004

    [46]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496196

    [47]

    Rudner M S, Lindner N H, Berg E, Levin M 2013 Phys. Rev. X 3031005

    [48]

    Cheng Q, Pan Y, Wang H, Zhang C, Yu D, Gover A, Zhang H, Li T, Zhou L, Zhu S 2019 Phys. Rev. Lett. 122173901

    [49]

    McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, Cavalleri A 2020 Nature Physics 1638

    [50]

    Chávez N C, Mattiotti F, Méndez-Bermudez J A, Borgonovi F, Celardo G L 2021 Phys. Rev. Lett. 126153201

    [51]

    Bao X X, Guo G F, Tan L 2021 Journal of Physics: Condensed Matter 33465403

    [52]

    Zhang X Z, Song Z 2020 Phys. Rev. B 102174303

    [53]

    Pérez-González B, Bello M, Gómez-León A, Platero G 2019 Phys. Rev. B 99035146

    [54]

    Lee T E 2016 Phys. Rev. Lett. 116133903

    [55]

    Entin-Wohlman O, Aharony A 2019 Phys. Rev. Res. 1033112

    [56]

    Sil A, Kumar Ghosh A 2019 Journal of Physics: Condensed Matter 32025601

    [57]

    Zuo Z W, Benalcazar W A, Liu Y, Liu C X 2021 Journal of Physics D: Applied Physics 54414004

    [58]

    Kuno Y, Nakafuji T, Ichinose I 2015 Phys. Rev. A 92063630

    [59]

    Yao S, Yan Z, Wang Z 2017 Phys. Rev. B 96195303

    [60]

    Dal Lago V, Atala M, Foa Torres L E F 2015 Phys. Rev. A 92023624

    [61]

    Fruchart M 2016 Phys. Rev. B 93115429

  • [1] 古燕, 王智鹏, 陆展鹏. 准晶势调制的一维p波超导体中的拓扑量子相变. 物理学报, doi: 10.7498/aps.74.20250137
    [2] 秦海蓉, 侯翊洁, 杨昆, 靳灿灿, 吕勇军. 非晶合金熔体中的动力学拓扑相变. 物理学报, doi: 10.7498/aps.74.20250513
    [3] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态. 物理学报, doi: 10.7498/aps.74.20240933
    [4] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变. 物理学报, doi: 10.7498/aps.73.20240976
    [5] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, doi: 10.7498/aps.73.20231987
    [6] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, doi: 10.7498/aps.72.20230690
    [7] 徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇. 应变调控下Tl2Ta2O7中的拓扑相变. 物理学报, doi: 10.7498/aps.72.20230043
    [8] 潘磊. 非厄米线性响应理论及其应用. 物理学报, doi: 10.7498/aps.71.20220862
    [9] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, doi: 10.7498/aps.71.20220796
    [10] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, doi: 10.7498/aps.69.20200542
    [11] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, doi: 10.7498/aps.69.20191962
    [12] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, doi: 10.7498/aps.69.20200415
    [13] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, doi: 10.7498/aps.69.20191454
    [14] 杨超, 陈澍. 淬火动力学中的拓扑不变量. 物理学报, doi: 10.7498/aps.68.20191410
    [15] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, doi: 10.7498/aps.67.20181857
    [16] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, doi: 10.7498/aps.67.20180624
    [17] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, doi: 10.7498/aps.66.224102
    [18] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, doi: 10.7498/aps.66.224502
    [19] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, doi: 10.7498/aps.66.224301
    [20] 殷 雯, 赖云忠, 严启伟, 梁九卿. 电子在周期驱动耦合量子阱中的振荡. 物理学报, doi: 10.7498/aps.52.1862
计量
  • 文章访问数:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-08

/

返回文章
返回