搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非厄米准周期系统中的二次局域体态和局域-扩展的边缘态

郭刚峰 包茜茜 谭磊 刘伍明

引用本文:
Citation:

非厄米准周期系统中的二次局域体态和局域-扩展的边缘态

郭刚峰, 包茜茜, 谭磊, 刘伍明

Reentrant Localized Bulk and Localized-Extended Edge in Quasiperiodic Non-Hermitian Systems

Guo Gang-Feng, Bao Xi-Xi, Tan Lei, Liu Wu-Ming
PDF
HTML
导出引用
  • 局域化是物理学中一个基础且极具潜力的研究领域. 基于广义Su-Schrieffer-Heeger模型, 我们针对其非厄米项以准周期、非对角形式出现的特点, 提出了一种新的分析框架, 旨在分别探讨体态与边缘态的局域化特性. 对于体态, 它可以经历由准无序诱导的扩展—共存—局域—共存—局域的转变, 或者是由非厄米特性引起的共存—局域—共存—局域的转变. 同时边缘态可以被破坏和恢复, 且其拓扑相变与局域化转变完全同步. 最后, 我们发现在局域化转变点处归一化参与率的导数展现出明显的不连续性. 我们的结果不仅展示了体态和边缘态局域化性质的多样性, 而且为局域化研究开辟了一个新的研究视角.
    The localization is one of the active and fundamental research areas in topology physics. In this field, a comprehensive understanding of how wave functions distribute within a system is crucial. The work delves into this topic by proposing a novel systematic method based on a generalized Su-Schrieffer-Heeger (SSH) model. This model incorporates a quasiperiodic non-Hermitian term that emerges in an off-diagonal location, adding a layer of complexity to the traditional SSH framework.By utilizing this model, we analyze the localization behaviors of both bulk and edge states independently. For the bulk states, the analysis reveals a fascinating transition sequence. Specifically, the bulk states can undergo an extended-coexisting-localized-coexisting-localized transition, which is induced by the introduction of quasidisorder. This transition is not arbitrary but is rather conformed by the inverse participation ratio (IPR), a metric that quantifies the degree of localization of a wave function. As quasidisorder increases, the bulk states initially remain extended, but gradually, some states begin to localize. A coexistence region emerges where both extended and localized states are present. Further increase in quasidisorder leads to a complete localization of all bulk states. However, remarkably, within a certain range of quasidisorder strengths, the localized states can once again transition back to an extended state, creating another coexistence region. This complex behavior demonstrates the rich and diverse localization properties of the bulk states in non-Hermitian quasiperiodic systems.In addition to the IPR, other metrics such as the normalized participation ratio (NPR) and the fractal dimension of the eigenstates also play important roles in characterizing the localization behavior. These metrics provide a more nuanced understanding of the transition process and help to confirm the existence of the coexistence regions.Overall, we presents a comprehensive analysis of the localization behaviors of bulk and edge states in non-Hermitian quasiperiodic systems based on a generalized SSH model. The proposed systematic method offers new insights into the complex interplay between quasidisorder, non-Hermiticity, and localization properties in topological physics.
  • 图 1  (a) ${\rm{IPR}} ^{B} $ (红) 和${\rm{NPR}} ^{B} $ (蓝) 随$ W_{1} $的变化, 灰色区域代表共存状态. (b)和(c) 体能谱的实部和虚部, 附着色代表本征态的${\rm{IPR}} ^{|\Psi^{n}\rangle} $值. (d) 拓扑零能$ |E|^{0} $与对应的$ \frac{\text{IPR}^{0}}{5} $和${\rm{NPR}} ^{0} $. (e) 拓扑不变量. 参数为$ t_{1} = 1 $, $ t_{2} = 2.5 $, $ \gamma = 0.2 $, $ L = 2000 $和$ W_{2} = -2\cos(3 W_{1})+2 $

    Fig. 1.  (a) ${\rm{IPR}} ^{B} $ (red) and ${\rm{NPR}} ^{B} $ (blue) versus $ W_{1} $. Shaded regions stand for coexisting regimes. (b) and (c) Real and imaginary parts of bulk energy spectrum, where the dressed colors stand for different values of ${\rm{IPR}} ^{|\Psi^{n}\rangle} $ for each bulk eigenstates. (d) Topological edge modes $ |E|^{0} $, accompanied by the corresponding $ \frac{\text{IPR}^{0}}{5} $ and ${\rm{NPR}} ^{0} $. (e) Topological invariant as a function of $ W_{1} $. Common parameters are $ t_{1} = 1 $, $ t_{2} = 2.5 $, $ \gamma = 0.2 $, $ L = 2000 $ and $ W_{2} = -2\cos(3 W_{1})+2 $.

    图 2  (a1)—(e1) 复平面能谱及其${\rm{IPR}} ^{|\Psi^{n}\rangle} $. (a2)—(e2) 蓝色和红色曲线代表一些体态的局域性质, 绿色条代表边缘态的局域性质. 为了显示清楚, 这些物理量已按比例缩放. (a1)—(a2) $ W_{1} = 0.15 $, 所有体态均为扩展态. (b1)—(b2) $ W_{1} = 0.35 $, 一些态仍为扩展态, 但一些态转为局域态. (c1)—(c2) $ W_{1} = 1 $, 所有的体态均转变为局域态. (d1)—(d2) $ W_{1} = 2.02 $, 部分已经局域的本征态会再转变为扩展态. (e1)—(e2) $ W_{1} = 3.8 $, 所有的体态再次全部转变为局域态. 其它参数和图1取值一致

    Fig. 2.  (a1)–(e1) Energy spectrum on the complex plane with corresponding ${\rm{IPR}} ^{|\Psi^{n}\rangle} $. (a2)–(e2) Both the blue and red lines stand for the localized properties of some bulk eigenstates, and the zero-energy state is shown as the green bar. For a better visibility, the values have been scaled proportionally. (a1)–(a2) $ W_{1} = 0.15 $, all bulk eigenstates are extended. (b1)–(b2) $ W_{1} = 0.35 $, some eigenstates are still extended while some are localized. (c1)–(c2) $ W_{1} = 1 $, all bulk eigenstates are transformed into localized. (d1)–(d2) $ W_{1} = 2.02 $, some already localized states will change into extended. (e1)–(e2) $ W_{1} = 3.8 $, all bulk eigenstates are transformed into localized again. Other parameters are the same as the ones in Fig. 1.

    图 3  (a) $ L = 12000 $, 随着γ变化的${\rm{IPR}} ^{B} $ (红) 和${\rm{NPR}} ^{B} $ (蓝), 两个灰色区域代表共存状态. (b) $ \gamma = 4.66946 $, ${\rm{NPR}} ^{B} $的有限尺寸效应分析, 系统尺寸分别为$ L = 20000 $, $ 30000 $和$ 40000 $. (c) 体能谱实部, 不同附着色代表$ \eta^{|\Psi^{n}\rangle} $的不同取值, $ L = 6000 $. (d) $ |E|^{0} $与对应的${\rm{IPR}} ^{0} $和${\rm{NPR}} ^{0} $随着γ的变化趋势, $ L = 2000 $. (e) 系统尺寸$ L = 12000 $时${\rm{NPR}} ^{0} $对γ的导数. (f) 拓扑不变量随参数γ的变化趋势, $ L = 2000 $. 其它参数为$ t_{1} = 9 $, $ t_{2} = 1 $, $ W_{1} = 0.0039 $和$ W_{2} = 1.563 $

    Fig. 3.  (a) $ L = 12000 $, ${\rm{IPR}} ^{B} $ (red) and ${\rm{NPR}} ^{B} $ (blue) evolving with γ. Two shaded regions stand for intermediate regimes. (b) Finite size scaling analysis of ${\rm{NPR}} ^{B} $ at $ \gamma = 4.66946 $ for $ L = 20000 $, $ 30000 $ and $ 40000 $, respectively. (c) Real parts of bulk energy spectrum for $ L = 6000 $, where different colors stand for different values of $ \eta^{|\Psi^{n}\rangle} $. (d) Evolution of $ |E|^{0} $ versus γ associated with ${\rm{IPR}} ^{0} $ and ${\rm{NPR}} ^{0} $, $ L = 2000 $. (e) Derivative of ${\rm{NPR}} ^{0} $ with respect to γ for $ L = 12000 $. (f) Topological invariant versus parameter γ for $ L = 2000 $. Common parameters are $ t_{1} = 9 $, $ t_{2} = 1 $, $ W_{1} = 0.0039 $ and $ W_{2} = 1.563 $.

    图 4  所有归一化体态的空间分布, 为了表示清楚, 系统尺寸取$ L = 1000 $, 并适当缩减能量值范围 (a) $ \gamma = 0.2 $, 扩展态与局域态一起出现. (b) $ \gamma = 1 $, 所有扩展态均转变为局域态. (c) $ \gamma = 4.66946 $, 一些局域态会转回扩展态. (d) $ \gamma = 5.5 $, 所有态再次变为局域态. 其它参数和图3 一致

    Fig. 4.  Spatial distributions of normalized bulk eigenstates with the change of eigenvalues. For enhanced visibility, the system size is $ L = 1000 $, and the values of the energies have been cut down appropriately. (a) $ \gamma = 0.2 $, the extended and localized eigenstates appearing together. (b) $ \gamma = 1 $, all extended eigenstates being transformed into the localized. (c) $ \gamma = 4.66946 $, some localized eigenstates turning to the extended. (d) $ \gamma = 5.5 $, all extended eigenstates being transformed into the localized once again. Other parameters are the same as the ones in Fig. 3.

    图 5  (a) 拓扑不变量随$ W_{1} $的变化趋势. (b) $ |E|^{0} $与对应的${\rm{IPR}} ^{0} $和${\rm{NPR}} ^{0} $随$ W_{1} $的演化. (c) 图为 (b) 其中一部分的详细信息. (d) ${\rm{NPR}} ^{0} $的导数, 显然其中存在一些不连续的点. (e) 以$ W_{1} $为自变量的${\rm{IPR}} ^{B} $ (红) 和${\rm{NPR}} ^{B} $ (蓝), 阴影区域表示扩展态和局域态共存. (f) 体能谱的实部, 附着在其上的不同颜色代表不同的${\rm{IPR}} ^{|\Psi^{n}\rangle} $值. (a), (b), (e) 和 (f) $ L = 2000 $, (c) 和 (d) $ L = 10000 $, 其它参数为$ t_{1} = 1 $, $ t_{2} = 1.3 $, $ \gamma = 0.05 $和$ W_{2} = W_{1} $

    Fig. 5.  (a) Topological invariant versus $ W_{1} $. (b) Evolution of $ |E|^{0} $ via $ W_{1} $, associated with ${\rm{IPR}} ^{0} $ and ${\rm{NPR}} ^{0} $. (c) Detailed information on the localization of the eigenstates with the lowest energy. (d) Derivative of ${\rm{NPR}} ^{0} $, where there exist some discontinuity points. (e) ${\rm{IPR}} ^{B} $ (red) and ${\rm{NPR}} ^{B} $ (blue) being plotted as a function of $ W_{1} $. The shaded region indicates the coexisting regime, with extended and localized eigenstates being coexistence. (f) Real part of bulk energy spectrum, where different colors stand for different values of ${\rm{IPR}} ^{|\Psi^{n}\rangle} $. For (a), (b), (e) and (f) $ L = 2000 $, and for (c) and (d) $ L = 10000 $. Same parameters are $ t_{1} = 1 $, $ t_{2} = 1.3 $, $ \gamma = 0.05 $ and $ W_{2} = W_{1} $.

  • [1]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [2]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [3]

    Asbóth J, Oroszlány L, Pályi A 2016 A Short Course on Topological Insulators, vol. 919

    [4]

    BERNEVIG B A, Hughes T L 2013 Topological Insulators and Topological Superconductors. Stu - student edition edn. (Princeton University Press

    [5]

    Shen S Q 2012 Topological Insulators Dirac Equation in Condensed Matters, vol. 174

    [6]

    Yokomizo K, Murakami S 2020 Phys. Rev. Research 2 043045Google Scholar

    [7]

    Martinez Alvarez V M, Barrios Vargas J E, Foa Torres L E F 2018 Phys. Rev. B 97 121401Google Scholar

    [8]

    Wu H, Wang B Q, An J H 2021 Phys. Rev. B 103 L041115Google Scholar

    [9]

    He P, Huang Z H 2020 Phys. Rev. A 102 062201Google Scholar

    [10]

    Torres L E F F 2019 Journal of Physics: Materials 3 014002

    [11]

    Esaki K, Sato M, Hasebe K, Kohmoto M 2011 Phys. Rev. B 84 205128Google Scholar

    [12]

    Hu Y C, Hughes T L 2011 Phys. Rev. B 84 153101Google Scholar

    [13]

    Zhu B, Lü R, Chen S 2014 Phys. Rev. A 89 062102Google Scholar

    [14]

    Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402Google Scholar

    [15]

    Xu Y, Wang S T, Duan L M 2017 Phys. Rev. Lett. 118 045701Google Scholar

    [16]

    Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W, Xue P 2017 Phys. Rev. Lett. 119 130501Google Scholar

    [17]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [18]

    Rufangura P, Folland T G, Agrawal A, Caldwell J D, Iacopi F 2020 Journal of Physics: Materials 3 032005Google Scholar

    [19]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103Google Scholar

    [20]

    Borgnia D S, Kruchkov A J, Slager R J 2020 Phys. Rev. Lett. 124 056802Google Scholar

    [21]

    Takata K, Notomi M 2018 Phys. Rev. Lett. 121 213902Google Scholar

    [22]

    Chen Y, Zhai H 2018 Phys. Rev. B 98 245130Google Scholar

    [23]

    Lang L J, Wang Y, Wang H, Chong Y D 2018 Phys. Rev. B 98 094307Google Scholar

    [24]

    Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N, Segev M 2018 Science 359

    [25]

    Xiao L, Deng T, Wang K, Zhu G, Wang Z, Yi W, Xue P 2020 Nature Physics 16

    [26]

    Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M, Zhen B 2018 Science 359 1009Google Scholar

    [27]

    Deng T S, Yi W 2019 Phys. Rev. B 100 035102Google Scholar

    [28]

    Ezawa M 2019 Phys. Rev. B 99 201411Google Scholar

    [29]

    Kawabata K, Higashikawa S, Gong Z, Ashida Y, Ueda M 2019 Nature Communications 10

    [30]

    Kawabata K, Ashida Y, Katsura H, Ueda M 2018 Phys. Rev. B 98 085116Google Scholar

    [31]

    Cai J Q, Yang Q Y, Xue Z Y, Gong M, Guo G C, Hu Y 2019

    [32]

    Lee C H, Li L, Gong J 2019 Phys. Rev. Lett. 123 016805Google Scholar

    [33]

    Yoshida T, Kudo K, Hatsugai Y a 2019 Scientific Reports 9

    [34]

    Luitz D J, Piazza F 2019 Phys. Rev. Research 1 033051Google Scholar

    [35]

    Rosenthal E I, Ehrlich N K, Rudner M S, Higginbotham A P, Lehnert K W 2018 Phys. Rev. B 97 220301Google Scholar

    [36]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [37]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [38]

    Xiong Y 2018 Journal of Physics Communications 2 035043Google Scholar

    [39]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [40]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404Google Scholar

    [41]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402Google Scholar

    [42]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402Google Scholar

    [43]

    Li L, Lee C H, Mu S, Gong J 2020 Nature Communications 11

    [44]

    Guo G F, Bao X X, Tan L 2021 New Journal of Physics 23 123007Google Scholar

    [45]

    Bao X X, Guo G F, Tan L 2021 Journal of Physics: Condensed Matter 33 465403Google Scholar

    [46]

    Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079

    [47]

    Ghatak A, Das T 2019 Journal of Physics: Condensed Matter 31 263001Google Scholar

    [48]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [49]

    Leykam D, Bliokh K Y, Huang C, Chong Y D, Nori F 2017 Phys. Rev. Lett. 118 040401Google Scholar

    [50]

    Denner M M, Skurativska A, Schindler F, Fischer M H, Thomale R, Bzdušek T, Neupert T 2021 Nature Communications 12

    [51]

    Yin C, Jiang H, Li L, Lü R, Chen S 2018 Phys. Rev. A 97 052115Google Scholar

    [52]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015

    [53]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801Google Scholar

    [54]

    Zhang X, Gong J 2020 Phys. Rev. B 101 045415Google Scholar

    [55]

    Longhi S 2018 Annalen der Physik 530 1800023Google Scholar

    [56]

    Zhu W, Teo W X, Li L, Gong J 2021 Phys. Rev. B 103 195414Google Scholar

    [57]

    Chen C, Qi L, Xing Y, Cui W X, Zhang S, Wang H F 2021 New Journal of Physics 23 123008Google Scholar

    [58]

    Jiang X P, Qiao Y, Cao J P 2021 Chinese Physics B 30 097202Google Scholar

    [59]

    Wang B X, Zhao C Y 2021 Phys. Rev. A 103 013727Google Scholar

    [60]

    Tang L Z, Zhang G Q, Zhang L F, Zhang D W 2021 Phys. Rev. A 103 033325Google Scholar

    [61]

    Agarwal K S, Joglekar Y N 2021 Phys. Rev. A 104 022218Google Scholar

    [62]

    Zeng Q B, Yang Y B, Xu Y 2020 Phys. Rev. B 101 020201

    [63]

    Liu Y, Wang Y, Liu X J, Zhou Q, Chen S 2021 Phys. Rev. B 103 014203Google Scholar

    [64]

    Liu T, Guo H, Pu Y, Longhi S 2020 Phys. Rev. B 102 024205Google Scholar

    [65]

    Zhai L J, Yin S, Huang G Y 2020 Phys. Rev. B 102 064206Google Scholar

    [66]

    Cai X 2021 Phys. Rev. B 103 014201Google Scholar

    [67]

    Longhi S 2021 Phys. Rev. B 103 054203Google Scholar

    [68]

    Zhang C, Sheng L, Xing D 2021 Phys. Rev. B 103 224207Google Scholar

    [69]

    Zhai L J, Huang G Y, Yin S 2021 Phys. Rev. B 104 014202

    [70]

    Wang Z H, Xu F, Li L, Xu D H, Wang B 2021 Phys. Rev. B 104 174501Google Scholar

    [71]

    Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131Google Scholar

    [72]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [73]

    Zhou L 2021 Phys. Rev. Research 3 033184Google Scholar

    [74]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301Google Scholar

    [75]

    Hou J, Wu Y J, Zhang C 2021 Phys. Rev. A 103 033305Google Scholar

    [76]

    Zhang D W, Chen Y L, Zhang G Q, Lang L J, Li Z, Zhu S L 2020 Phys. Rev. B 101 235150Google Scholar

    [77]

    Wu C, Fan J, Chen G, Jia S 2021 New Journal of Physics 23 123048Google Scholar

    [78]

    Zuo Z W, Kang D 2022 Phys. Rev. A 106 013305Google Scholar

    [79]

    Jin W, Zhan-Peng L, Zhi-Hao X, Li-Ping G 2022 Acta Phys. Sin.

    [80]

    Roy S, Chattopadhyay S, Mishra T, Basu S 2022 Phys. Rev. B 105 214203Google Scholar

    [81]

    Li X, Li X, Das Sarma S 2017 Phys. Rev. B 96 085119Google Scholar

    [82]

    Li X, Das Sarma S 2020 Phys. Rev. B 101 064203Google Scholar

    [83]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801Google Scholar

    [84]

    Zhang D W, Tang L Z, Lang L J, Yan H, Zhu S L 2020 Science China Physics, Mechanics & Astronomy 63 267062

    [85]

    Luo X W, Zhang C 2022

    [86]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355Google Scholar

    [87]

    Roy S, Khaymovich I M, Das A, Moessner R 2018 SciPost Phys. 4 025Google Scholar

    [88]

    Longhi S, Gatti D, Della Valle G 2015 Phys. Rev. B 92 094204Google Scholar

    [89]

    Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R, Szameit A 2020 Science 368 311Google Scholar

    [90]

    Wang K, Dutt A, Yang K Y, Wojcik C C, Vučković J, Fan S 2021 Science 371 1240Google Scholar

    [91]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Greiter M, Thomale R 2020 Nature Physics 16

    [92]

    Ghatak A, Brandenbourger M, van Wezel J, Coulais C 2020 Proceedings of the National Academy of Sciences 117 29561Google Scholar

    [93]

    Liu T, He J J, Yoshida T, Xiang Z L, Nori F 2020 Phys. Rev. B 102 235151Google Scholar

    [94]

    Brouwer P W, Silvestrov P G, Beenakker C W J 1997 Phys. Rev. B 56 R4333Google Scholar

  • [1] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变. 物理学报, doi: 10.7498/aps.73.20240976
    [2] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, doi: 10.7498/aps.73.20231987
    [3] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, doi: 10.7498/aps.72.20230690
    [4] 徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇. 应变调控下Tl2Ta2O7中的拓扑相变. 物理学报, doi: 10.7498/aps.72.20230043
    [5] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, doi: 10.7498/aps.72.20221814
    [6] 潘磊. 非厄米线性响应理论及其应用. 物理学报, doi: 10.7498/aps.71.20220862
    [7] 郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印. 二维各向异性SSH模型的拓扑性质研究. 物理学报, doi: 10.7498/aps.71.20211967
    [8] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, doi: 10.7498/aps.71.20220796
    [9] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, doi: 10.7498/aps.69.20191632
    [10] 郑周甫, 尹剑飞, 温激鸿, 郁殿龙. 基于声子晶体板的弹性波拓扑保护边界态. 物理学报, doi: 10.7498/aps.69.20200542
    [11] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, doi: 10.7498/aps.69.20191454
    [12] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, doi: 10.7498/aps.69.20191962
    [13] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, doi: 10.7498/aps.69.20200415
    [14] 杨超, 陈澍. 淬火动力学中的拓扑不变量. 物理学报, doi: 10.7498/aps.68.20191410
    [15] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, doi: 10.7498/aps.67.20181455
    [16] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, doi: 10.7498/aps.67.20181857
    [17] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, doi: 10.7498/aps.67.20180624
    [18] 沈清玮, 徐林, 蒋建华. 圆环结构磁光光子晶体中的拓扑相变. 物理学报, doi: 10.7498/aps.66.224102
    [19] 王青海, 李锋, 黄学勤, 陆久阳, 刘正猷. 一维颗粒声子晶体的拓扑相变及可调界面态. 物理学报, doi: 10.7498/aps.66.224502
    [20] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, doi: 10.7498/aps.66.224301
计量
  • 文章访问数:  167
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-28

/

返回文章
返回