搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复相互作用调制的两粒子系统中的局域化转变

郝佳鑫 徐志浩

引用本文:
Citation:

复相互作用调制的两粒子系统中的局域化转变

郝佳鑫, 徐志浩

Localization transition in a two-particle system with complex interaction modulation

HAO Jiaxin, XU Zhihao
科大讯飞翻译 (iFLYTEK Translation)
PDF
导出引用
  • 本文研究了一维复相互作用调制的非厄米玻色子模型.通过数值计算能谱的实-复转变、Shannon熵、标准参与比率与拓扑缠绕数,发现当相互作用强度低于临界相互作用强度时,系统的能谱全为实数,处于扩展相,且系统是拓扑平庸的;而当相互作用强度超过临界相互作用强度时,系统开始出现复能谱,处于扩展态与局域态混合相,且此时系统是拓扑非平庸的.计算结果表明,能谱的实-复转变点、扩展-局域的转变点与拓扑转变点相一致.动力学演化结果可以验证系统的实-复转变与局域化转变.最后,提出利用二维光子波导阵列可以模拟这一复相互作用调制的一维玻色子模型.此项工作将对非厄米两体系统的局域性质提供很好的参考.
    In this work, We investigate a one-dimensional two-boson system with complex interaction modulation, described by the Hamiltonian: $$\hat{H}=-J\sum_{j}\left(\hat{c}_j^\dagger\hat{c}_{j+1}+h.c\right)+\sum_{j}\frac{U}{2}e^{2i\pi\alpha j}\hat{n}_j\left(\hat{n}_j-1\right),$$ where U is the interaction amplitude, and the modulation frequency α = (√5 - 1) is an irrational number. The interaction satisfies $U_{-j}=U^*_j$, ensuring the system possesses party-time (PT) reversal symmetry. Using the exact diagonalization method, we numerically calculated the real-to-complex transition of the energy spectrum, Shannon entropy, the normalized participation ration, and the topological winding number. For small U, all eigenvalues are real. However, as U increases, eigenvalues corresponding to two particles occupying the same site become complex, marking a PT symmetry-breaking transition at U = 2. This point signifies a real-to-complex transition in the spectrum. To characterize the localization properties of the system, we employ the Shannon entropy and the normalized participation ration (NPR). When U < 2, all the eigenstates are extended, exhibiting high Shannon entropy and NPR values. Conversely, for U > 2, states with complex eigenvalues showing low Shannon entropy and significantly reduced NPR, indicating localization. Meanwhile, in this regime, states with real eigenvalues remain extended. We further analyze the topological aspects of the system using the winding number. A topological phase transition occurs at U = 2, where the winding number changes from 0 to 1. This transition coincides with the onset of PT symmetry breaking and the localization transition. The dynamical evolution can be used to detect the localization properties and the real-to-complex transition with the initial state being two bosons at the center site of the chain. Finally, we propose an experimental realization using a two dimensional linear photonic waveguide array. The modulated interaction can be controlled by adjusting the changing the real and imaginary parts of the refractive index of diagonal waveguides. To simulate this non-Hermitian two-body problem, we numerically calculate the density distributions of the wave packets in a two-dimensional plane, which indirectly reflects the propagation of light in a two-dimensional waveguide array. We hope that our work can deepen the understanding of the interplay between interaction and disorder while stimulating further interest in two-body systems and non-Hermitian localization.
  • [1]

    Anderson, P W 1958 Phys. Rev. 1091492

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453891

    [3]

    Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453895

    [4]

    Chabanov A A, Stoytchev M, Genack A Z 2000 Nature 404850

    [5]

    Pradhan P, Sridhar S 2000 Phys. Rev. Lett. 852360

    [6]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103013901

    [7]

    Xu Z H, Huang F H L, Zhang Y B 2019 Acta Phys. Sin. 68222-228(in Chinese) [徐志浩, 皇甫宏丽, 张云波2005物理学报68222]

    [8]

    Bender, Carl M, Stefan Boettcher 1998 Phys. Rev. Lett. 805243

    [9]

    W. D. Heiss, 2012 Phys. Rev. A 45444016

    [10]

    M.-A. Miri, A. Alù 2019 Science. 363086803

    [11]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121136802

    [12]

    Ou Z, Wang Y, Li L 2023 Phys. Rev. B 107 L161404

    [13]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121086803

    [14]

    Borgnia D S, Kruchkov A J, Slager R J 2020 Phys. Rev. Lett. 124056802

    [15]

    J. Feinberg and A. Zee, 1999 Phys. Rev. E 596433

    [16]

    K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato 2019Phys. Rev. X 9041015

    [17]

    Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77570

    [18]

    Hatano N, Nelson D R 1997 Phys. Rev. B 568651

    [19]

    Hatano N, Nelson D R 1998 Phys. Rev. B 588384

    [20]

    Longhi, Stefano 2019 Phys. Rev. B 100125157

    [21]

    Hamazaki R, Kawabata K, Ueda M. 2019 Phys. Rev. Lett. 123090603

    [22]

    Zhai L J, Yin S, Huang G Y. 2020, Phys. Rev. B 102064206

    [23]

    Liu J H, Xu Z H. 2023, Phys. Rev. B 108184205

    [24]

    Tomita T, Nakajima S, Danshita I, Takasu Y, Takahashi Y 2017 Sci. Adv. 3 e1701513

    [25]

    Sponselee K, Freystatzky L, Abeln B, et al. 2018 Quantum Sci. Technol 40140027

    [26]

    Lee C H. 2021 Phys. Rev. B 104195102

    [27]

    Shen R, Lee C H. 2022 Communications Physics 5238

    [28]

    M Gao, C Sheng, Y Zhao, R He, et al. 2024 Phys. Rev. B 110094308

    [29]

    G Corrielli, A Crespi, G Della Valle, S Longhi, R Osellame 2013 Nature communications 41555

    [30]

    Yan Xing, Xuedong Zhao, Zhe Lü, et al. 2021 Optics Expres 2940428

    [31]

    Wang Y C, Hu H P, Chen S 2016 Eur. Phys. J B 891

    [32]

    Zhou L W. Han, W Q 2021 Chin. Phys. B 30100308

    [33]

    Tian Q, Gu Y J, Zhou L W 2024 Phys. Rev. B 109054204

  • [1] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态. 物理学报, doi: 10.7498/aps.74.20240933
    [2] 陆展鹏, 徐志浩. 具有平带的一维十字型晶格中重返局域化现象. 物理学报, doi: 10.7498/aps.73.20231393
    [3] 张慧洁, 贺衎. 哈密顿量宇称-时间对称性的刻画. 物理学报, doi: 10.7498/aps.73.20230458
    [4] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变. 物理学报, doi: 10.7498/aps.73.20240510
    [5] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变. 物理学报, doi: 10.7498/aps.73.20240976
    [6] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化. 物理学报, doi: 10.7498/aps.73.20231987
    [7] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, doi: 10.7498/aps.71.20220353
    [8] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, doi: 10.7498/aps.71.20212246
    [9] 潘磊. 非厄米线性响应理论及其应用. 物理学报, doi: 10.7498/aps.71.20220862
    [10] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展. 物理学报, doi: 10.7498/aps.71.20221323
    [11] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性. 物理学报, doi: 10.7498/aps.71.20220511
    [12] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性. 物理学报, doi: 10.7498/aps.70.20220511
    [13] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, doi: 10.7498/aps.69.20191632
    [14] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, doi: 10.7498/aps.68.20191317
    [15] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, doi: 10.7498/aps.68.20191463
    [16] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, doi: 10.7498/aps.67.20180235
    [17] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, doi: 10.7498/aps.66.227802
    [18] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, doi: 10.7498/aps.66.224203
    [19] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, doi: 10.7498/aps.66.227804
    [20] 丁锐, 金亚秋, 小仓久直. 二维随机介质中柱面波传播及其局域性的随机泛函分析. 物理学报, doi: 10.7498/aps.59.3674
计量
  • 文章访问数:  159
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回