搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维随机介质中柱面波传播及其局域性的随机泛函分析

丁锐 金亚秋 小仓久直

引用本文:
Citation:

二维随机介质中柱面波传播及其局域性的随机泛函分析

丁锐, 金亚秋, 小仓久直

Stochastic functional analysis of propagation and localization of cylindrical wave in a two-dimensional random medium

Ding Rui, Jin Ya-Qiu, Ogura Hisanao
PDF
导出引用
  • 分析了二维各向同性均匀随机介质中柱面波的传播特性及局域化现象.用随机泛函理论,在频域内将随机介电起伏展开成柱坐标系下的Wiener积分式,将波场表示为内外行柱面波的线性和,求解二维Helmholtz波动方程,得到随机介电起伏对柱面波幅度与相位调制的解析表达.由柱面波能量的空间分布验证了波的局域化现象,并求解局域化长度.二维随机介质中平面波按柱面波展开的波转换方程与非随机介质中的情形有相似的表达,但具有随机介电起伏对幅度和相位的调制,并给出数值模拟结果.
    Propagation and localization of cylindrical wave in a two-dimensional isotropic and homogeneous random medium is studied. By expanding the random permittivity fluctuation in the form of a Wiener integral equation in the frequency domain, and representing the wave fields by a linear combination of outgoing and incoming waves, the scalar Helmholtz equation is solved by means of stochastic functional approach to obtain the analytical expression of cylindrical wave. The spatial wave energy distribution is derived to demonstrate the localization phenomenon, and the localization length is also calculated. Compared with the waves in non-random medium, the wave transfer equation between plane wave and cylindrical wave in random medium shows an additional exponential factor to indicate the modulation effects due to the medium randomness in both the amplitude and the phase. Numerical simulations are presented to illustrate the functional dependence of the localization phenomenon.
    • 基金项目: 国家自然科学基金 (批准号:60971091, 40637033) 和复旦大学研究生创新基金资助的课题.
    [1]

    [1]Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    [2]Genack A Z, Garcia N 1991 Phys. Rev. Lett. 66 2064

    [3]

    [3]Berry M V, Klein S 1997 Eur. J. Phys. 18 222

    [4]

    [4]Wiersma D S, Bartolini P, Lagendijk A, Roghini R 1997 Nature 390 671

    [5]

    [5]Chabanov A A, Stoytchev M, Genack A Z 2000 Nature 404 850

    [6]

    [6]Storze M, Gross P, Aegerter C M, Maret G 2006 Phys. Rev. Lett. 96 063904

    [7]

    [7]Hu H, Strybulevych A, Page J H, Skipetrov S E, Tiggelen B A 2008 Nat. Phys. 4 945

    [8]

    [8]Chabé J, Lemarié G, Grémaud B, Delande D, Szriftgiser P, Garreau J C 2008 Phys. Rev. Lett. 101 255702

    [9]

    [9]Cao Y J, Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军、杨旭 2008 物理学报 57 3620]

    [10]

    ]Wang H Q, Liu Z D, Wang B 2008 Acta Phys. Sin. 57 5550 (in Chinese) [王慧琴、刘正东、王冰 2008 物理学报 57 5550]

    [11]

    ]Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673

    [12]

    ]Sheng P, White B, Zhang Z Q, Papanicolaou G 1986 Phys. Rev. B 34 4757

    [13]

    ]Soukoulis C M, Jiang X, Xu J Y, Cao H 2002 Phys. Rev. B 65 041103

    [14]

    ]Zhuang F, Shen J Q, Ye J 2007 Acta Phys. Sin. 56 541 (in Chinese) [庄飞、沈建其、叶军 2007 物理学报 56 541]

    [15]

    ]Gao X, Yang Z Q, Hou J, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Acta Phys. Sin. 58 1105 (in Chinese) [高喜、杨梓强、侯钧、亓丽梅、兰峰、史宗君、李大治、梁正 2009 物理学报58 1105]

    [16]

    ]Ye Z, Li S, Sun X 2002 Phys. Rev. E 66 045602

    [17]

    ]Sigalas M M, Soukoulis C M, Chan C T, Turner D 1996 Phys. Rev. B 53 8340

    [18]

    ]Asatryan A A, Robinson P A, McPhedran R C, Botten L C, Sterke M, Langtry T L, Nicorovici N A 2003 Phys. Rev. E 67 036605

    [19]

    ]Rusek M, Orlowski A, Mostowski J 1997 Phys. Rev. E 56 4892

    [20]

    ]Ziegler K 2003 J. Quant. Spectrosc. Radiat. Transfer 79 1189

    [21]

    ]Albada M P, Tiggelen B A, Lagendijk A, Tip A 1991 Phys. Rev. Lett. 66 3132

    [22]

    ]Ogura H 1966 J. Phys. Soc. Jpn. 21 1370

    [23]

    ]Spiegel M R 1998 Mathematical Handbook of Formulas and Tables (New York: McGraw-Hill)

    [24]

    ]Ding R, Wang Z L, Ogura H 2008 Radio Sci. 43 2005

    [25]

    ]Ogura H 1975 Phys. Rev. A 11 942

    [26]

    ]Jin Y Q 1994 Electromagnetic Scattering Modeling for Quantitative Remote Sensing (Singapore: World Scientific) p6

  • [1]

    [1]Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    [2]Genack A Z, Garcia N 1991 Phys. Rev. Lett. 66 2064

    [3]

    [3]Berry M V, Klein S 1997 Eur. J. Phys. 18 222

    [4]

    [4]Wiersma D S, Bartolini P, Lagendijk A, Roghini R 1997 Nature 390 671

    [5]

    [5]Chabanov A A, Stoytchev M, Genack A Z 2000 Nature 404 850

    [6]

    [6]Storze M, Gross P, Aegerter C M, Maret G 2006 Phys. Rev. Lett. 96 063904

    [7]

    [7]Hu H, Strybulevych A, Page J H, Skipetrov S E, Tiggelen B A 2008 Nat. Phys. 4 945

    [8]

    [8]Chabé J, Lemarié G, Grémaud B, Delande D, Szriftgiser P, Garreau J C 2008 Phys. Rev. Lett. 101 255702

    [9]

    [9]Cao Y J, Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军、杨旭 2008 物理学报 57 3620]

    [10]

    ]Wang H Q, Liu Z D, Wang B 2008 Acta Phys. Sin. 57 5550 (in Chinese) [王慧琴、刘正东、王冰 2008 物理学报 57 5550]

    [11]

    ]Abrahams E, Anderson P W, Licciardello D C, Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673

    [12]

    ]Sheng P, White B, Zhang Z Q, Papanicolaou G 1986 Phys. Rev. B 34 4757

    [13]

    ]Soukoulis C M, Jiang X, Xu J Y, Cao H 2002 Phys. Rev. B 65 041103

    [14]

    ]Zhuang F, Shen J Q, Ye J 2007 Acta Phys. Sin. 56 541 (in Chinese) [庄飞、沈建其、叶军 2007 物理学报 56 541]

    [15]

    ]Gao X, Yang Z Q, Hou J, Qi L M, Lan F, Shi Z J, Li D Z, Liang Z 2009 Acta Phys. Sin. 58 1105 (in Chinese) [高喜、杨梓强、侯钧、亓丽梅、兰峰、史宗君、李大治、梁正 2009 物理学报58 1105]

    [16]

    ]Ye Z, Li S, Sun X 2002 Phys. Rev. E 66 045602

    [17]

    ]Sigalas M M, Soukoulis C M, Chan C T, Turner D 1996 Phys. Rev. B 53 8340

    [18]

    ]Asatryan A A, Robinson P A, McPhedran R C, Botten L C, Sterke M, Langtry T L, Nicorovici N A 2003 Phys. Rev. E 67 036605

    [19]

    ]Rusek M, Orlowski A, Mostowski J 1997 Phys. Rev. E 56 4892

    [20]

    ]Ziegler K 2003 J. Quant. Spectrosc. Radiat. Transfer 79 1189

    [21]

    ]Albada M P, Tiggelen B A, Lagendijk A, Tip A 1991 Phys. Rev. Lett. 66 3132

    [22]

    ]Ogura H 1966 J. Phys. Soc. Jpn. 21 1370

    [23]

    ]Spiegel M R 1998 Mathematical Handbook of Formulas and Tables (New York: McGraw-Hill)

    [24]

    ]Ding R, Wang Z L, Ogura H 2008 Radio Sci. 43 2005

    [25]

    ]Ogura H 1975 Phys. Rev. A 11 942

    [26]

    ]Jin Y Q 1994 Electromagnetic Scattering Modeling for Quantitative Remote Sensing (Singapore: World Scientific) p6

  • [1] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [2] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [3] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [4] 陆大全, 胡巍. 椭圆响应强非局域非线性介质中的二维异步分数傅里叶变换及光束传输特性. 物理学报, 2013, 62(8): 084211. doi: 10.7498/aps.62.084211
    [5] 徐四六, 刘会平, 易林. 强非局域非线性介质中的二维库墨-高斯孤子簇. 物理学报, 2010, 59(2): 1069-1074. doi: 10.7498/aps.59.1069
    [6] 张立升, 邓敏艺, 孔令江, 刘慕仁, 唐国宁. 用元胞自动机模型研究二维激发介质中的非线性波. 物理学报, 2009, 58(7): 4493-4499. doi: 10.7498/aps.58.4493
    [7] 曹永军, 杨旭, 姜自磊. 弹性波通过一维复合材料系统的透射性质. 物理学报, 2009, 58(11): 7735-7740. doi: 10.7498/aps.58.7735
    [8] 蔡 力, 韩小云, 温熙森. 长波条件下二维声子晶体中的弹性波传播及各向异性. 物理学报, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [9] 邓超生, 徐 慧, 刘小良, 伍晓赞. 无序度对一维长程关联无序系统中局域化-退局域化转变的影响. 物理学报, 2008, 57(4): 2415-2420. doi: 10.7498/aps.57.2415
    [10] 丁 锐, 王志良, 小仓久直. 二维各向同性均匀随机介质中平面波的传播及其局域性. 物理学报, 2008, 57(9): 5519-5528. doi: 10.7498/aps.57.5519
    [11] 曹永军, 杨 旭. 广义Fibonacci准周期结构声子晶体透射性质的研究. 物理学报, 2008, 57(6): 3620-3624. doi: 10.7498/aps.57.3620
    [12] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布. 物理学报, 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [13] 王慧琴, 刘正东, 王 冰. 二维随机介质中的能量分布和频谱特性. 物理学报, 2008, 57(9): 5550-5557. doi: 10.7498/aps.57.5550
    [14] 朱 博, 桂永胜, 周文政, 商丽燕, 郭少令, 褚君浩, 吕 捷, 唐 宁, 沈 波, 张福甲. Al0.22Ga0.78N/GaN二维电子气中的弱局域和反弱局域效应. 物理学报, 2006, 55(5): 2498-2503. doi: 10.7498/aps.55.2498
    [15] 曹永军, 董纯红, 周培勤. 一维准周期结构声子晶体透射性质的研究. 物理学报, 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [16] 刘劲松, 刘 海, 王 春. 二维随机介质中准态模的频谱时间演化特性. 物理学报, 2005, 54(7): 3116-3122. doi: 10.7498/aps.54.3116
    [17] 刘劲松, 王 宏. 随机激光器中准态腔的阈值与其局域化程度的关系. 物理学报, 2004, 53(12): 4224-4228. doi: 10.7498/aps.53.4224
    [18] 谢 尊, 安 忠, 李有成. 聚噻吩中双电子极化子附近的二维局域振动模. 物理学报, 1999, 48(10): 1938-1943. doi: 10.7498/aps.48.1938
    [19] 姚凯伦, 李占杰, 邢彪. 聚乙炔孤子的二维局域振动模及其键弯曲势的影响. 物理学报, 1992, 41(1): 87-96. doi: 10.7498/aps.41.87
    [20] 黄五群, 陈天崙, 辛运愇. 二维随机三角点阵上三态和四态Potts模型的蒙特—卡罗重整化群研究. 物理学报, 1989, 38(4): 659-664. doi: 10.7498/aps.38.659
计量
  • 文章访问数:  6059
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-08
  • 修回日期:  2009-12-30
  • 刊出日期:  2010-03-05

二维随机介质中柱面波传播及其局域性的随机泛函分析

  • 1. (1)复旦大学波散射与遥感信息教育部重点实验室,上海 200433; (2)京都大学电子工程系,日本京都 606-01
    基金项目: 国家自然科学基金 (批准号:60971091, 40637033) 和复旦大学研究生创新基金资助的课题.

摘要: 分析了二维各向同性均匀随机介质中柱面波的传播特性及局域化现象.用随机泛函理论,在频域内将随机介电起伏展开成柱坐标系下的Wiener积分式,将波场表示为内外行柱面波的线性和,求解二维Helmholtz波动方程,得到随机介电起伏对柱面波幅度与相位调制的解析表达.由柱面波能量的空间分布验证了波的局域化现象,并求解局域化长度.二维随机介质中平面波按柱面波展开的波转换方程与非随机介质中的情形有相似的表达,但具有随机介电起伏对幅度和相位的调制,并给出数值模拟结果.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回