-
In this work, we investigate the delocalization-localization transition of Floquet eigenstates in a driven chain with an incommensurate Aubry-Andr\'e (AA) on-site potential and a small non-reciprocal hopping term which is driven periodically in time. The driving protocol is chosen such that the Floquet Hamlitonian corresponds a localized phase in the high-frequency limit and a delocaized phase in the low-frequency limit. By numerically ecaluating the inverse participation ratio and the fractal dimension $D_q$, we identify a clear delocalization-localization transition of the Floquet eigenstates at a critical frequency $\omega_{c}\approx0.318\pi$. This transition aligns with the real-to-complex spectrum transition of the Floquet Hamiltonian. For the driven frequency $\omega>\omega_c$, the system resides in a localized phase, and we observe the emergence of CAT states-linear superposition of localized single particle states-in the Floquet spectrum. These states exhibits weight distributions concentrated around a few nearby sites of the chain, forming two peaks of unequal weight due to the non-reciprocal effect, distinguishing them from the Hermitic case. In constrast, for $\omega<\omega_c$, we identidfy the presence of a mobility edge over a range of driving frequencies, separateing localized states (above the edge) from mulitfractal and extended states (below the edge). Notablely, multifractal states are observed in the Floquet eigenspectrum across over a broad frequency range. Importantly, we highlight that the non-driven, non-reciprocal AA model does not support either multifractal states or a mobility edge in its spectrum. Thus, our findings reveal unique dynamical signatures absent in the non-driven non-Hermitian scenario, offering a fresh perspective on the localization properties of periodically driven systems. Finally, we provide a possible circuit experiment scheme for the periodically driven non-reciprocal AA model. In the following work, we will extend our research direction to clean systems, such as Stark models, to explore the influence of periodic driving on their localization properties.
-
Keywords:
- periodically driven system /
- localization /
- mobility edge /
- non-reciprocal system
-
[1] Anderson P W 1958 Phys. Rev. 109 1492
[2] Tang L Z, Zhang G Q, Zhang L F, Zhang D W 2021 Phys. Rev. A 103 033325
[3] Schulz M, Hooley C.A, Moessner R, Pollmann F 2019 Phys. Rev. Lett. 122 040606
[4] Lin X S, Chen X M, Guo G C, Gong M 2023 Phys. Rev. B 108 174206
[5] Dai Q, Lu Z P, Xu Z H 2023 Phys. Rev. B 108 144207
[6] Liu H, Lu Z P, Xia X, Xu Z H 2024 New J. Phys. 26 093007
[7] Li H, Dong Z L, Longhi S, Liang Q, Xie D Z, Yan B 2022 Phys. Rev. Lett. 129 220403
[8] Ganeshan S, Pixley J H, Das Sarma S 2015 Phys. Rev. Lett. 114 146601
[9] Aditya S, Sengupta K, Sen D 2023 Phys. Rev. B 107 035402
[10] Qi R, Cao J P, Jiang X P 2023 Phys. Rev. B 107 224201
[11] Zuo Z W, Kang D W 2022 Phys. Rev. A 106 013305
[12] Xu Z H, Xia X, Chen S 2021 Phys. Rev. B 104 224204
[13] Wang Y C, Xia X, Zhang L, Yao H P, Chen S, You J G, Zhou Q, Liu X J 2020 Phys. Rev. Lett. 125 196604
[14] Tang Q Y, He Y 2024 Phys. Rev. B 109 224204
[15] Zhou L W 2021 Phys. Rev. Res 3 033184
[16] Liu J H, Xu Z H 2023 Phys. Rev. B 108 184205
[17] Lin Q, Li T Y, Xiao L, Wang K K, Yi W, Xue P 2022 Nature 13 3229
[18] Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77 570
[19] Hatano N, Nelson D R 1997 Phys. Rev. B. 56 8651
[20] Zhou L W, Wang Q H, Wang H L, Gong J B 2018 Phys. Rev. A 98 022129
[21] Zhou L W, Gong J B 2018 Phys. Rev. A 97 063603
[22] Tiwari V, Bhakuni D S, Sharma A 2024 Phys. Rev. B 109 L161104
[23] Ji C R, Zhou S D, Xie A, Jiang Z Y, Sheng X H, Ding L, Ke Y G, Wang H Q, Zhuang S L 2023 Phys. Rev. B 108 054310
[24] Mukherjee B, Sen A, Sen D, Sengupta K 2016 Phys. Rev. B 94 155122
[25] Mukherjee B, Mohan P, Sen D, Sengupta K 2018 Phys. Rev. B 97 205415
[26] Mukherjee B 2018 Phys. Rev. B 98 235112
[27] Yang K, Zhou L W, Ma W C, Kong X, Wang P F, Qin X, Rong X, Wang Y, Shi F Z 2019 Phys. Rev. B 100 085308
[28] Zhou L W, Du Q Q 2021 New J. Phys. 23 063041
[29] Zhou L W 2019 Phys. Rev. B 100 184314
[30] Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402
[31] Mukherjee B, Nandy S, Sen A, Sen D, Sengupta K 2020 Phys. Rev. B. 101 245107
[32] Mukherjee B, Sen A, Sen D, Sengupta K 2020 Phys. Rev. B. 102 014301
[33] Liu H, Xiong T S, Zhang W, An J H 2019 Phys. Rev. A 100 023622
[34] Wu H, An J H 2020 Phys. Rev. B 102 041119
[35] Wu H, An J H 2022 Phys. Rev. B 105 L121113
[36] Bai S Y, An J H 2020 Phys. Rev. A 102 060201
[37] Sarkar M, Ghosh R, Sen A, Sengupta K 2021 Phys. Rev. B 103 184309
[38] Sarkar M, Ghosh R, Sen A, Sengupta K 2022 Phys. Rev. B 105 024301
[39] Tong Q J, An J H, Gong J B, Luo H G, Oh C H 2013 Phys. Rev. B 87 201109
[40] Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803
[41] Ahmed A, Ramachandran A, Khaymovich I M, Sharma A 2022 Phys. Rev. B 106 205119
[42] Roy S, Khaymovich I M, Das A, Moessner R 2018 Sci Post. Phys. 4 025
[43] Cheng E H, Lang L J 2022 Acta Phys. Sin. 71 160301 (in Chinese) [成恩宏,郎利君 2022 物理学报 71 160301]
计量
- 文章访问数: 120
- PDF下载量: 16
- 被引次数: 0