搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期驱动非互易Aubry-André模型中的多重分形态和迁移率边

王宇佳 徐志浩

引用本文:
Citation:

周期驱动非互易Aubry-André模型中的多重分形态和迁移率边

王宇佳, 徐志浩

Multifractal state and mobility edges in a periodically driven non-reciprocal Aubry-André model

WANG Yujia, XU Zhihao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文研究了在非互易Aubry-André模型中由方波式周期驱动所诱导的多重分形态和迁移率边. 通过数值计算逆参与率、能谱的实复转变以及平均逆参与率的标度分析等, 发现在以高于临界频率驱动下系统展现完全的局域相. 同时在Floquet谱的特定区域存在CAT态, 不同于厄米情况, 其波函数分布的两个峰值展现非等权叠加的特性, 这是由非互易物理所决定的. 而以低于临界频率驱动下, Floquet谱中存在迁移率边和多重分形态. 该研究结果为周期驱动系统中局域化性质的研究提供了新的视角.
    In this work, we investigate the delocalization-localization transition of Floquet eigenstates in a driven chain with an incommensurate Aubry-André (AA) on-site potential and a small non-reciprocal hopping term that is driven periodically in time. The driving protocol is chosen such that the Floquet Hamiltonian corresponds to a localized phase in the high-frequency limit and a delocalized phase in the low-frequency limit. By numerically calculating the inverse participation ratio and the fractal dimension $D_q$, we identify a clear delocalization-localization transition of the Floquet eigenstates at a critical frequency $\omega_{c}\approx0.318\pi$. This transition aligns with the real-to-complex spectrum transition of the Floquet Hamiltonian. For the driven frequency $\omega>\omega_{\mathrm{c}}$, the system resides in a localized phase, and we observe the emergence of CAT states—linear superposition of localized single particle states—in the Floquet spectrum. These states exhibit weight distributions concentrated around a few nearby sites of the chain, forming two peaks of unequal weight due to the non-reciprocal effect, distinguishing them from the Hermitic case. In contrast, for $\omega<\omega_{\mathrm{c}}$, we identify the presence of a mobility edge over a range of driving frequencies, separating localized states (above the edge) from multifractal and extended states (below the edge). Notably, multifractal states are observed in the Floquet eigenspectrum across a broad frequency range. Importantly, we highlight that the non-driven, non-reciprocal AA model does not support multifractal states nor a mobility edge in its spectrum. Thus, our findings reveal unique dynamical signatures that do not exist in the non-driven non-Hermitian scenario, providing a fresh perspective on the localization properties of periodically driven systems. Finally, we provide a possible circuit experiment scheme for the periodically driven non-reciprocal AA model. In the following work, we will extend our research to clean systems, such as Stark models, to explore the influence of periodic driving on their localization properties.
  • 图 1  一维非互易模型示意图. 红线和蓝线代表不同跃迁强度, 其中$ \mathcal{J}(t) $由式(1)所示, $ h $ 代表非互易强度, $ j $代表格点

    Fig. 1.  Schematic diagram of the one-dimensional non-reciprocal model. The red and blue lines represent different hopping amplitudes, $ h $ is non-reciprocal amplitudes and $ j $ is the site index.

    图 2  (a)逆参与率$ I^{(2)}_{n} $随着能级指标$ n/L $和频率$ \omega $的变化情况. 这里, 能量实部升序排列. (b)分形维度$ D_{2} $随着能级指标$ \tilde{n}/L $和频率$ \omega $的变化情况, 以及复能量占比$ f_{\mathrm{Im}} $(黑色实线)随频率$ \omega $的变化图, 其中能级指标$ \tilde{n} $以逆参与率值的大小升序排列. 这里$ L=2048 $

    Fig. 2.  (a) Plot of $ I^{(2)}_{n} $ as a function of the normalized eigenfunction index $ n/L $ and $ \omega $. Here, the real part of the eigenvalues is ordered in ascending order. (b) Plot of the fractal dimension $ D_{2} $ as a function of $ \tilde{n}/L $ and $ \omega $, and $ f_{\mathrm{Im}} $ (solid black line) as a function of $ \omega $, where the energies sort in increasing order of the inverse participation ratio. Here, $ L=2048 $.

    图 3  (a)、(e)和(g) [(b)、(f)和(h)]分别为$ h=0.1 $, 0和$ -0.1 $时, 位于能级$ n/L\approx0.24 $ ($ n/L\approx0.76 $)处的密度分布$ \rho_j $. (c)和(d)分别为$ h=0.1 $时, 能级$ n/L\approx1/3 $和$ 1/2 $处的密度分布$ \rho_j $. (i) $ I_n^{(2)} $随着频率$ \omega $变化的情况. (j) 能量实部$ \mathrm{Re}(\varepsilon_n^{{\mathrm{F}}}) $随着能级指标$ n/L $的分布情况. 这里选取 $ L=2048 $和$ \omega=\pi $, 并且能级指标按照能量实部升序排列

    Fig. 3.  (a), (e), and (g) [(b), (f), and (h)] Plot of the density distributions $ \rho_j $ at $ n/L\approx0.24 $ ($ n/L\approx0.76 $) with $ h=0.1 $, 0, and $ -1 $, respectively. (c) and (d) Plot of $ \rho_j $ with $ h=0.1 $ at $ n/L\approx1/3 $ and $ 1/2 $, respectively. (i) $ I_n^{(2)} $ as a function of $ \omega $. (j) Plot of $ \mathrm{Re}(\varepsilon_n^{{\mathrm{F}}}) $ as a function of $ n/L $. Here, $ L=2048 $, $ \omega=\pi $, and the real part of eigenvalues is ordered in ascending order.

    图 4  (a)—(c)分别展示了在频率$ \omega=0.235\pi $时, 处于能级$ \tilde{n}/L\approx 0.995 $、$ 0.7 $和$ 0.2 $处对应于不同$ q $的分形维度$ D_q $随着尺寸$ 1/\ln{(L)} $的变化情况. 这里能级按照逆参与率值的升序排列

    Fig. 4.  (a)–(c) Plot of the fractal dimensions $ D_q $ as a function of $ 1/\ln{(L)} $ with different $ q $ and $ \omega=0.235\pi $ at $ \tilde{n}/L\approx 0.995 $, $ 0.7 $, and $ 0.2 $, respectively. Here, the energies sort in increasing order of the inverse participation ratio.

    图 5  (a) 在频率$ \omega=0.132\pi $时, $ \tilde{n}/L=0.75 $处波函数的密度分布$ \rho_j $. (b) 不同频率处, MIPR的标度分析. (c) 在图(b)频率下, 在参数$ h=0.1 $和$ \mu=0.05 $附近随机选取20个数进行无序平均后, MIPR的标度分析. (d)和(e) 在频率$ \omega=0.132\pi $时, $ I_{\tilde{n}}^{(2)}\cdot L^{0.51} $与$ I_{\tilde{n}}^{(2)}\cdot L $随不同尺寸的缩放图. 这里能级按照逆参与率值的升序排列

    Fig. 5.  (a) The density distribution $ \rho_j $ with $ \omega=0.132\pi $ at $ \tilde{n}/L=0.75 $. (b) The scaling of the MIPR for different $ \omega $. (c) The scaling of MIPR after averaging random 20 parameters near $ h = 0.1 $ and $ \mu = 0.05 $ with the frequency in Fig(b). (d) and (e) The scaling of $ I_{\tilde{n}}^{(2)}\cdot L^{0.51} $ and $ I_{\tilde{n}}^{(2)}\cdot L $ as a function of $ L $ with $ \omega=0.132\pi $. Here, the energies sort in increasing order of the inverse participation ratio.

    图 6  频率$ \omega=0.132\pi $(a)和$ \omega=0.5\pi $(b)时在复空间的能谱图. (c)在开边界条件下, 当频率$ \omega=0.132\pi $时环上 随机5个能级所对应的密度分布$ \rho_j $. (d)在开边界条件下, 当频率$ \omega=0.5\pi $时随机5个能级所对应的密度分布$ \rho_j $, 这里$ L=2048 $

    Fig. 6.  The energy spectrum with $ \omega=0.132\pi $ (a) and $ \omega=0.5\pi $ (b) in complex space. (c) The density distribution $ \rho_j $ for 5 random energy levels on the ring under open boundary conditions with frequency $ \omega = 0.132\pi $. (d) The density distribution $ \rho_j $ for 5 random energy levels under open boundary conditions with frequency $ \omega = 0.5\pi $. Here, $ L=2048 $.

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Tang L Z, Zhang G Q, Zhang L F, Zhang D W 2021 Phys. Rev. A 103 033325Google Scholar

    [3]

    Schulz M, Hooley C.A, Moessner R, Pollmann F 2019 Phys. Rev. Lett. 122 040606Google Scholar

    [4]

    Lin X S, Chen X M, Guo G C, Gong M 2023 Phys. Rev. B 108 174206Google Scholar

    [5]

    Dai Q, Lu Z P, Xu Z H 2023 Phys. Rev. B 108 144207Google Scholar

    [6]

    Liu H, Lu Z P, Xia X, Xu Z H 2024 New J. Phys. 26 093007Google Scholar

    [7]

    Li H, Dong Z L, Longhi S, Liang Q, Xie D Z, Yan B 2022 Phys. Rev. Lett. 129 220403Google Scholar

    [8]

    Ganeshan S, Pixley J H, Das Sarma S 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [9]

    Aditya S, Sengupta K, Sen D 2023 Phys. Rev. B 107 035402Google Scholar

    [10]

    Qi R, Cao J P, Jiang X P 2023 Phys. Rev. B 107 224201Google Scholar

    [11]

    Zuo Z W, Kang D W 2022 Phys. Rev. A 106 013305Google Scholar

    [12]

    Xu Z H, Xia X, Chen S 2021 Phys. Rev. B 104 224204Google Scholar

    [13]

    Wang Y C, Xia X, Zhang L, Yao H P, Chen S, You J G, Zhou Q, Liu X J 2020 Phys. Rev. Lett. 125 196604Google Scholar

    [14]

    Tang Q Y, He Y 2024 Phys. Rev. B 109 224204Google Scholar

    [15]

    Zhou L W 2021 Phys. Rev. Res 3 033184Google Scholar

    [16]

    Liu J H, Xu Z H 2023 Phys. Rev. B 108 184205Google Scholar

    [17]

    Lin Q, Li T Y, Xiao L, Wang K K, Yi W, Xue P 2022 Nature 13 3229

    [18]

    Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77 570Google Scholar

    [19]

    Hatano N, Nelson D R 1997 Phys. Rev. B. 56 8651Google Scholar

    [20]

    Zhou L W, Wang Q H, Wang H L, Gong J B 2018 Phys. Rev. A 98 022129Google Scholar

    [21]

    Zhou L W, Gong J B 2018 Phys. Rev. A 97 063603Google Scholar

    [22]

    Tiwari V, Bhakuni D S, Sharma A 2024 Phys. Rev. B 109 L161104Google Scholar

    [23]

    Ji C R, Zhou S D, Xie A, Jiang Z Y, Sheng X H, Ding L, Ke Y G, Wang H Q, Zhuang S L 2023 Phys. Rev. B 108 054310

    [24]

    Mukherjee B, Sen A, Sen D, Sengupta K 2016 Phys. Rev. B 94 155122Google Scholar

    [25]

    Mukherjee B, Mohan P, Sen D, Sengupta K 2018 Phys. Rev. B 97 205415Google Scholar

    [26]

    Mukherjee B 2018 Phys. Rev. B 98 235112Google Scholar

    [27]

    Yang K, Zhou L W, Ma W C, Kong X, Wang P F, Qin X, Rong X, Wang Y, Shi F Z 2019 Phys. Rev. B 100 085308Google Scholar

    [28]

    Zhou L W, Du Q Q 2021 New J. Phys. 23 063041Google Scholar

    [29]

    Zhou L W 2019 Phys. Rev. B 100 184314Google Scholar

    [30]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402Google Scholar

    [31]

    Mukherjee B, Nandy S, Sen A, Sen D, Sengupta K 2020 Phys. Rev. B. 101 245107Google Scholar

    [32]

    Mukherjee B, Sen A, Sen D, Sengupta K 2020 Phys. Rev. B. 102 014301Google Scholar

    [33]

    Liu H, Xiong T S, Zhang W, An J H 2019 Phys. Rev. A 100 023622Google Scholar

    [34]

    Wu H, An J H 2020 Phys. Rev. B 102 041119Google Scholar

    [35]

    Wu H, An J H 2022 Phys. Rev. B 105 L121113Google Scholar

    [36]

    Bai S Y, An J H 2020 Phys. Rev. A 102 060201Google Scholar

    [37]

    Sarkar M, Ghosh R, Sen A, Sengupta K 2021 Phys. Rev. B 103 184309Google Scholar

    [38]

    Sarkar M, Ghosh R, Sen A, Sengupta K 2022 Phys. Rev. B 105 024301

    [39]

    Tong Q J, An J H, Gong J B, Luo H G, Oh C H 2013 Phys. Rev. B 87 201109Google Scholar

    [40]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803Google Scholar

    [41]

    Ahmed A, Ramachandran A, Khaymovich I M, Sharma A 2022 Phys. Rev. B 106 205119Google Scholar

    [42]

    Roy S, Khaymovich I M, Das A, Moessner R 2018 Sci Post. Phys. 4 025

    [43]

    成恩宏, 郎利君 2022 物理学报 71 160301Google Scholar

    Cheng E H, Lang L J 2022 Acta Phys. Sin. 71 160301Google Scholar

  • [1] 郝佳鑫, 徐志浩. 复相互作用调制的两粒子系统中的局域化转变. 物理学报, doi: 10.7498/aps.74.20241691
    [2] 冯曦曦, 陈文, 高先龙. 量子信息中的度量空间方法在准周期系统中的应用. 物理学报, doi: 10.7498/aps.73.20231605
    [3] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变. 物理学报, doi: 10.7498/aps.73.20240510
    [4] 陆展鹏, 徐志浩. 具有平带的一维十字型晶格中重返局域化现象. 物理学报, doi: 10.7498/aps.73.20231393
    [5] 任国梁, 申开波, 刘永佳, 刘英光. 类石墨烯氮化碳结构(C3N)热传导机理研究. 物理学报, doi: 10.7498/aps.72.20221441
    [6] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, doi: 10.7498/aps.71.20212246
    [7] 徐志浩, 皇甫宏丽, 张云波. 一维准周期晶格中玻色子对的迁移率边. 物理学报, doi: 10.7498/aps.68.20182218
    [8] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, doi: 10.7498/aps.68.20191463
    [9] 刘通, 高先龙. 具有p波超流的一维非公度晶格中迁移率边研究. 物理学报, doi: 10.7498/aps.65.117101
    [10] 丁锐, 金亚秋, 小仓久直. 二维随机介质中柱面波传播及其局域性的随机泛函分析. 物理学报, doi: 10.7498/aps.59.3674
    [11] 曹永军, 杨旭, 姜自磊. 弹性波通过一维复合材料系统的透射性质. 物理学报, doi: 10.7498/aps.58.7735
    [12] 王慧琴, 刘正东, 王 冰. 二维随机介质中的能量分布和频谱特性. 物理学报, doi: 10.7498/aps.57.5550
    [13] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布. 物理学报, doi: 10.7498/aps.57.2186
    [14] 曹永军, 杨 旭. 广义Fibonacci准周期结构声子晶体透射性质的研究. 物理学报, doi: 10.7498/aps.57.3620
    [15] 周文政, 林 铁, 商丽燕, 黄志明, 崔利杰, 李东临, 高宏玲, 曾一平, 郭少令, 桂永胜, 褚君浩. InAlAs/InGaAs/InAlAs量子阱高迁移率二维电子气系统中的反弱局域效应研究. 物理学报, doi: 10.7498/aps.56.4099
    [16] 曹永军, 董纯红, 周培勤. 一维准周期结构声子晶体透射性质的研究. 物理学报, doi: 10.7498/aps.55.6470
    [17] 王传奎, 孙金祚, 王继锁, 王文正. 一维无公度系统Aubry模型的迁移率边. 物理学报, doi: 10.7498/aps.42.95
    [18] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化. 物理学报, doi: 10.7498/aps.37.688
    [19] 刘有延, 周义昌. 一维无公度势系统的迁移率边. 物理学报, doi: 10.7498/aps.37.1807
    [20] 熊诗杰, 蔡建华. 非均匀无序系统中Anderson局域化的标度理论——实空间重整化群途径. 物理学报, doi: 10.7498/aps.34.1530
计量
  • 文章访问数:  313
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-25
  • 修回日期:  2025-02-25
  • 上网日期:  2025-02-27

/

返回文章
返回