搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期驱动非互易Aubry-André模型中的多重分形态和迁移率边

王宇佳 徐志浩

引用本文:
Citation:

周期驱动非互易Aubry-André模型中的多重分形态和迁移率边

王宇佳, 徐志浩

Multifractality and mobility edge in a periodically driven non-reciprocal Aubry-André model

WANG Yujia, XU Zhihao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文研究了在非互易Aubry-André模型中由方波式周期驱动所诱导的多重分形态和迁移率边.通过数值计算逆参与率、能谱的实复转变以及平均逆参与率的标度分析等,发现在以高于临界频率驱动下系统展现完全的局域相.同时在Floquet谱的特定区域存在CAT态,不同于厄米情况,其波函数分布的两个峰值展现非等权叠加的特性,这是由非互易物理所决定的.而以低于临界频率驱动下,Floquet谱中存在迁移率边和多重分形态.该研究结果为周期驱动系统中局域化性质的研究提供了新的视角.
    In this work, we investigate the delocalization-localization transition of Floquet eigenstates in a driven chain with an incommensurate Aubry-Andr\'e (AA) on-site potential and a small non-reciprocal hopping term which is driven periodically in time. The driving protocol is chosen such that the Floquet Hamlitonian corresponds a localized phase in the high-frequency limit and a delocaized phase in the low-frequency limit. By numerically ecaluating the inverse participation ratio and the fractal dimension $D_q$, we identify a clear delocalization-localization transition of the Floquet eigenstates at a critical frequency $\omega_{c}\approx0.318\pi$. This transition aligns with the real-to-complex spectrum transition of the Floquet Hamiltonian. For the driven frequency $\omega>\omega_c$, the system resides in a localized phase, and we observe the emergence of CAT states-linear superposition of localized single particle states-in the Floquet spectrum. These states exhibits weight distributions concentrated around a few nearby sites of the chain, forming two peaks of unequal weight due to the non-reciprocal effect, distinguishing them from the Hermitic case. In constrast, for $\omega<\omega_c$, we identidfy the presence of a mobility edge over a range of driving frequencies, separateing localized states (above the edge) from mulitfractal and extended states (below the edge). Notablely, multifractal states are observed in the Floquet eigenspectrum across over a broad frequency range. Importantly, we highlight that the non-driven, non-reciprocal AA model does not support either multifractal states or a mobility edge in its spectrum. Thus, our findings reveal unique dynamical signatures absent in the non-driven non-Hermitian scenario, offering a fresh perspective on the localization properties of periodically driven systems. Finally, we provide a possible circuit experiment scheme for the periodically driven non-reciprocal AA model. In the following work, we will extend our research direction to clean systems, such as Stark models, to explore the influence of periodic driving on their localization properties.
  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Tang L Z, Zhang G Q, Zhang L F, Zhang D W 2021 Phys. Rev. A 103 033325

    [3]

    Schulz M, Hooley C.A, Moessner R, Pollmann F 2019 Phys. Rev. Lett. 122 040606

    [4]

    Lin X S, Chen X M, Guo G C, Gong M 2023 Phys. Rev. B 108 174206

    [5]

    Dai Q, Lu Z P, Xu Z H 2023 Phys. Rev. B 108 144207

    [6]

    Liu H, Lu Z P, Xia X, Xu Z H 2024 New J. Phys. 26 093007

    [7]

    Li H, Dong Z L, Longhi S, Liang Q, Xie D Z, Yan B 2022 Phys. Rev. Lett. 129 220403

    [8]

    Ganeshan S, Pixley J H, Das Sarma S 2015 Phys. Rev. Lett. 114 146601

    [9]

    Aditya S, Sengupta K, Sen D 2023 Phys. Rev. B 107 035402

    [10]

    Qi R, Cao J P, Jiang X P 2023 Phys. Rev. B 107 224201

    [11]

    Zuo Z W, Kang D W 2022 Phys. Rev. A 106 013305

    [12]

    Xu Z H, Xia X, Chen S 2021 Phys. Rev. B 104 224204

    [13]

    Wang Y C, Xia X, Zhang L, Yao H P, Chen S, You J G, Zhou Q, Liu X J 2020 Phys. Rev. Lett. 125 196604

    [14]

    Tang Q Y, He Y 2024 Phys. Rev. B 109 224204

    [15]

    Zhou L W 2021 Phys. Rev. Res 3 033184

    [16]

    Liu J H, Xu Z H 2023 Phys. Rev. B 108 184205

    [17]

    Lin Q, Li T Y, Xiao L, Wang K K, Yi W, Xue P 2022 Nature 13 3229

    [18]

    Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77 570

    [19]

    Hatano N, Nelson D R 1997 Phys. Rev. B. 56 8651

    [20]

    Zhou L W, Wang Q H, Wang H L, Gong J B 2018 Phys. Rev. A 98 022129

    [21]

    Zhou L W, Gong J B 2018 Phys. Rev. A 97 063603

    [22]

    Tiwari V, Bhakuni D S, Sharma A 2024 Phys. Rev. B 109 L161104

    [23]

    Ji C R, Zhou S D, Xie A, Jiang Z Y, Sheng X H, Ding L, Ke Y G, Wang H Q, Zhuang S L 2023 Phys. Rev. B 108 054310

    [24]

    Mukherjee B, Sen A, Sen D, Sengupta K 2016 Phys. Rev. B 94 155122

    [25]

    Mukherjee B, Mohan P, Sen D, Sengupta K 2018 Phys. Rev. B 97 205415

    [26]

    Mukherjee B 2018 Phys. Rev. B 98 235112

    [27]

    Yang K, Zhou L W, Ma W C, Kong X, Wang P F, Qin X, Rong X, Wang Y, Shi F Z 2019 Phys. Rev. B 100 085308

    [28]

    Zhou L W, Du Q Q 2021 New J. Phys. 23 063041

    [29]

    Zhou L W 2019 Phys. Rev. B 100 184314

    [30]

    Else D V, Bauer B, Nayak C 2016 Phys. Rev. Lett. 117 090402

    [31]

    Mukherjee B, Nandy S, Sen A, Sen D, Sengupta K 2020 Phys. Rev. B. 101 245107

    [32]

    Mukherjee B, Sen A, Sen D, Sengupta K 2020 Phys. Rev. B. 102 014301

    [33]

    Liu H, Xiong T S, Zhang W, An J H 2019 Phys. Rev. A 100 023622

    [34]

    Wu H, An J H 2020 Phys. Rev. B 102 041119

    [35]

    Wu H, An J H 2022 Phys. Rev. B 105 L121113

    [36]

    Bai S Y, An J H 2020 Phys. Rev. A 102 060201

    [37]

    Sarkar M, Ghosh R, Sen A, Sengupta K 2021 Phys. Rev. B 103 184309

    [38]

    Sarkar M, Ghosh R, Sen A, Sengupta K 2022 Phys. Rev. B 105 024301

    [39]

    Tong Q J, An J H, Gong J B, Luo H G, Oh C H 2013 Phys. Rev. B 87 201109

    [40]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803

    [41]

    Ahmed A, Ramachandran A, Khaymovich I M, Sharma A 2022 Phys. Rev. B 106 205119

    [42]

    Roy S, Khaymovich I M, Das A, Moessner R 2018 Sci Post. Phys. 4 025

    [43]

    Cheng E H, Lang L J 2022 Acta Phys. Sin. 71 160301 (in Chinese) [成恩宏,郎利君 2022 物理学报 71 160301]

  • [1] 郝佳鑫, 徐志浩. 复相互作用调制的两粒子系统中的局域化转变. 物理学报, doi: 10.7498/aps.74.20241691
    [2] 冯曦曦, 陈文, 高先龙. 量子信息中的度量空间方法在准周期系统中的应用. 物理学报, doi: 10.7498/aps.73.20231605
    [3] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变. 物理学报, doi: 10.7498/aps.73.20240510
    [4] 陆展鹏, 徐志浩. 具有平带的一维十字型晶格中重返局域化现象. 物理学报, doi: 10.7498/aps.73.20231393
    [5] 任国梁, 申开波, 刘永佳, 刘英光. 类石墨烯氮化碳结构(C3N)热传导机理研究. 物理学报, doi: 10.7498/aps.72.20221441
    [6] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化. 物理学报, doi: 10.7498/aps.71.20212246
    [7] 徐志浩, 皇甫宏丽, 张云波. 一维准周期晶格中玻色子对的迁移率边. 物理学报, doi: 10.7498/aps.68.20182218
    [8] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象. 物理学报, doi: 10.7498/aps.68.20191463
    [9] 刘通, 高先龙. 具有p波超流的一维非公度晶格中迁移率边研究. 物理学报, doi: 10.7498/aps.65.117101
    [10] 丁锐, 金亚秋, 小仓久直. 二维随机介质中柱面波传播及其局域性的随机泛函分析. 物理学报, doi: 10.7498/aps.59.3674
    [11] 曹永军, 杨旭, 姜自磊. 弹性波通过一维复合材料系统的透射性质. 物理学报, doi: 10.7498/aps.58.7735
    [12] 王慧琴, 刘正东, 王 冰. 二维随机介质中的能量分布和频谱特性. 物理学报, doi: 10.7498/aps.57.5550
    [13] 王慧琴, 刘正东, 王 冰. 同材质颗粒不同填充密度的随机介质中光场的空间分布. 物理学报, doi: 10.7498/aps.57.2186
    [14] 曹永军, 杨 旭. 广义Fibonacci准周期结构声子晶体透射性质的研究. 物理学报, doi: 10.7498/aps.57.3620
    [15] 周文政, 林 铁, 商丽燕, 黄志明, 崔利杰, 李东临, 高宏玲, 曾一平, 郭少令, 桂永胜, 褚君浩. InAlAs/InGaAs/InAlAs量子阱高迁移率二维电子气系统中的反弱局域效应研究. 物理学报, doi: 10.7498/aps.56.4099
    [16] 曹永军, 董纯红, 周培勤. 一维准周期结构声子晶体透射性质的研究. 物理学报, doi: 10.7498/aps.55.6470
    [17] 王传奎, 孙金祚, 王继锁, 王文正. 一维无公度系统Aubry模型的迁移率边. 物理学报, doi: 10.7498/aps.42.95
    [18] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化. 物理学报, doi: 10.7498/aps.37.688
    [19] 刘有延, 周义昌. 一维无公度势系统的迁移率边. 物理学报, doi: 10.7498/aps.37.1807
    [20] 熊诗杰, 蔡建华. 非均匀无序系统中Anderson局域化的标度理论——实空间重整化群途径. 物理学报, doi: 10.7498/aps.34.1530
计量
  • 文章访问数:  120
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-27

/

返回文章
返回