Vol. 74, No. 9 (2025)
2025年05月05日
封面文章

2025, 74 (9): 094204.
doi: 10.7498/aps.74.20250048
摘要 +
在离子光钟实验系统中, 离子的运动效应是衡量一套光钟性能的主要指标之一, 是目前限制各类不同离子光钟具有更低不确定度的关键影响因素. 在第一套液氮低温钙离子光钟的基础上(2022 Phys. Rev. Appl. 17 034041 ), 我们研制了新一套液氮钙离子光钟的物理系统, 并对其离子囚禁装置进行了较大改进, 主要包括以下两方面: 通过引入射频电压的主动稳定装置, 将液氮低温钙离子光钟的径向宏运动频率的长期漂移抑制到了小于$1\;\mathrm{kHz}$水平; 通过改进离子阱鞍点位置剩余电压的补偿方案, 进一步将液氮低温钙离子光钟中附加微运动造成的频移抑制至小于$1.0\times10^{-19}$. 这些改进有助于提升离子的冷却效率与提高离子温度的评估精度. 通过对宏运动红蓝边带的测量, 精确评估了Doppler冷却后离子的振动平均声子数, 对应的离子温度为0.78 mK, 接近Doppler冷却极限. 此外, 稳定的宏运动频率为下一步在液氮低温钙离子光钟上实施三维边带冷却创造了良好条件, 也为推动液氮低温钙离子光钟的系统不确定度进一步降低至$10^{-19}$量级打下了基础.
专题: 超快原子分子谱学仪器与测量方法

2025, 74 (9): 095202.
doi: 10.7498/aps.74.20250135
摘要 +
基于空间啁啾的单发泵浦-探测技术是探究物质在强激光泵浦下达到温稠密态过程中电子非平衡动力学的重要手段, 其时间分辨率已达到百飞秒量级. 本文详细阐述了温稠密物质交流电导率的空间啁啾单发测量原理及高时间分辨实验装置, 并对影响系统时间分辨率的关键因素进行深入剖析. 分析表明, 基于超短泵浦-探测脉冲, 该系统可实现13.8 fs的时间分辨率. 然而, 在实际实验中, 延时零点的精确标定、成像系统的景深限制以及低通滤波效应等因素, 均会对系统的时间分辨能力产生显著影响. 本研究不仅为提升温稠密物质交流电导率单发测量的时间精度提供了理论依据和实践指导, 而且为探索强场条件下材料的超快动力学过程奠定了坚实的技术基础.
专题: 极端条件原子分子动力学

2025, 74 (9): 093201.
doi: 10.7498/aps.74.20241792
摘要 +
强场层析成像通过强场驱动的电子再散射实现取向分子的结构成像, 其优势在于无需预先计算不同原子的散射截面. 强场层析成像已成功应用于同核双原子分子结构的提取, 但对于更为普遍的异核分子体系, 其电子散射截面更为复杂, 该成像方案的适用性仍需进一步研究. 本文以异核双原子分子为例, 基于强场层析成像方案开展分子结构成像研究. 通过求解含时薛定谔方程, 获得光电子产量随分子轴取向角的变化, 并发展了一种异核分子散射截面随取向角变化的拟合方法. 通过拟合, 成功提取了分子核间距信息, 拟合结果与预设的分子核间距相一致. 研究结果表明, 强场层析成像方案同样适用于异核分子结构信息的提取, 为复杂分子体系的结构研究提供了新的可能性.
气体、等离子体和放电物理

2025, 74 (9): 095201.
doi: 10.7498/aps.74.20250087
摘要 +
托卡马克高约束H模条件下偏滤器脱靶和热流控制是当前磁约束核聚变研究中的关键物理问题. 脱靶对H模边界输运物理尤其是对芯部约束兼容性的影响是研究偏滤器脱靶物理的关键问题. 本文获得了HL-2A装置H模等离子体偏滤器脱靶与芯部约束兼容的实验结果, 采用OMFIT集成模拟平台, 新发展了偏滤器靶板区的神经网络快速集成模拟方法, 率先采用该快速集成模拟方法开展HL-2A第39007炮高约束模式下, 边界偏滤器脱靶与芯部约束兼容性的集成模拟研究, 经验证集成模拟结果与实验结果相吻合. 通过进一步分析发现: HL-2A装置H模脱靶情况下, 在芯部$ 0.1 < \rho \leqslant {\mathrm{ }}0.5 $的区域内高极向波数($ {k}_{\theta }{\rho }_{{\mathrm{s}}} $>1)模式下的湍性输运以离子温度梯度(ITG)模主导, 在芯部$ 0.5 < \rho \leqslant {\mathrm{ }}0.7 $的区域内的湍性输运以电子湍流主导; 而边界则是在归一化极向波数$ {k}_{\theta }{\rho }_{{\mathrm{s}}} < 2 $的情况下由电子湍流主导, $ {k}_{\theta }{\rho }_{{\mathrm{s}}} > 2 $的情况下则以ITG为主, 并伴有少量的电子湍流. 本文研究结果为托卡马克装置芯边耦合物理研究提供了一定的集成模拟与实验验证基础.

2025, 74 (9): 095203.
doi: 10.7498/aps.74.20241462
摘要 +
等离子体旋转及其剪切是影响聚变装置的关键参数之一, 等离子体旋转的驱动和控制对未来聚变堆的稳定运行和约束改善都具有很大意义. 目前靠外部动量注入的方式不足以在满足Q大于5的同时抑制电阻壁模不稳定性. 因此, 有必要对不依赖外部动量注入的等离子体自发旋转展开实验研究. 为了更好地预测未来聚变装置中自发旋转速度的大小, 本文在东方超环托卡马克(EAST)上开展了残余应力与无量纲参数的定标研究, 利用平衡中性束的方法进行了多次自发扭矩的实验测量, 为未来托卡马克装置中等离子体自发旋转的预测提供实验依据. 实验定标结果表明, 芯部残余应力与$\rho _{\ast }^{-1.80\pm1.26}$相关, 而边界残余应力的定标则显示出对$\rho _{\ast }^{1.26\pm0.63}$的依赖性, 这表明随着装置尺寸的增大, 未来托卡马克聚变堆中芯部的残余应力可能会增大, 而边界残余应力则减小. 芯部与边界残余应力的定标结果差异表明, 在边界区域刮削层区残余应力的产生过程中, 有$\boldsymbol{E}\times\boldsymbol{B}$流剪切以外的对称性破坏机制起主导作用. 在自发扭矩与$\nu _{\ast }$的定标之间发现芯部自发扭矩依赖于$\nu _{\ast }^{0.21\pm0.18}$. 结合芯部自发扭矩与归一化旋转半径、归一化碰撞率的定标结果, 得到芯部自发扭矩的定标律为$\rho _{\ast }^{-1.39\pm0.71}\nu _{\ast }^{-0.11\pm0.10}$. 使用ITER氘-氚混合运行方案中的等离子体参数预测得到芯部自发扭矩大小为$(1.0\pm6.3)$ N$\cdot$m, 远小于之前DIII-D预测结果.
专题: 超快原子分子光物理

2025, 74 (9): 093202.
doi: 10.7498/aps.74.20250064
摘要 +
分子强场近似(SFA)理论虽然在描述强激光场中分子的超快动力学方面取得了巨大的成功, 但是理论本身存在关键的矛盾. 一方面SFA基本思想要求初态为无场下的系统本征态, 另一方面物理过程的空间平移不变性要求系统初态应当为激光场缀饰态, 这两个相互矛盾的要求分别对应非缀饰态和缀饰态两种形式的分子SFA理论, 两种理论的有效性和适用条件存在广泛的争议. 本文对(椭)圆偏振激光场中N2和Ne2分子的电离过程进行了研究, 期望能给出上述争议的解答. 椭圆偏振光能有效抑制再散射过程及各种干涉效应的影响, 使得电离过程更加干净, 因此可以有效甄别缀饰态和非缀饰态的适用条件. 本文采用SFA方法及库仑修正强场近似(CCSFA)方法计算了缀饰态和非缀饰态下不同分子轨道对应的光电子动量分布, 并与已有的实验结果进行了对比. 结果发现, 对于Ne2这样核间距较大的分子, 必须采用缀饰态才能准确地描述其电离特征; 而对于N2这样核间距较小的分子, 缀饰态描述则不适用. 本文的结论为准确描述激光诱导分子超快过程及相应理论的进一步发展提供了参考.
凝聚物质:结构、力学和热学性质

2025, 74 (9): 096101.
doi: 10.7498/aps.74.20241602
摘要 +
Feshbach共振是在特定外场下原子间发生共振相互作用的现象, 主要表现为在共振附近量化低能散射性质的广义散射长度随外场趋于发散. 近年来, 随着冷原子物理的发展, s波及高分波的Feshbach共振相继被发现, 为研究共振相互作用在多体物理中的效应提供了宝贵的途径. 本文基于多通道量子缺陷理论(MQDT), 预言在1039.24 和1055.64 G (1 G = 10–4 T)外磁场下, 7Li原子间存在两个d波Feshbach共振, 并确定了共振的各项参数, 如共振宽度等. 同时, 估计了磁偶极矩相互作用对这两个共振的影响. 本文的结果拓展了在7Li原子气体中研究d波共振相互作用的契机.

2025, 74 (9): 096201.
doi: 10.7498/aps.74.20241624
摘要 +
通过结构设计调控石墨烯的性能已引起广泛关注. 然而, 结构设计几何参数与性能之间存在复杂的非线性关系, 如何准确预测石墨烯性能参数加快结构设计仍需进一步深入探索. 本文通过引入周期性菱形穿孔缺陷有效地实现了负泊松比石墨烯的结构设计, 分析了负泊松比效应的产生机制, 并基于反向传播神经网络(BPNN)构建了一种数据驱动的机器学习模型, 可实现高效预测并设计具有负泊松比的穿孔石墨烯结构. 通过分子动力学模拟构建菱形穿孔石墨烯结构的泊松比数据集, 采用优化后的BPNN模型对泊松比进行预测分析, 研究发现, 穿孔间距比(IS)对菱形穿孔石墨烯结构泊松比的影响最显著, 而穿孔纵横比(AR)与晶胞尺寸(L)的影响则相对较弱. 本文还研究了不同穿孔几何参数对菱形穿孔石墨烯负泊松比效应的影响规律, 减小IS和增大AR能够增强石墨烯结构的负泊松比效应. 机器学习模型的预测结果与分子动力学模拟结果高度吻合, 验证了机器学习方法在石墨烯泊松比预测中的有效性和可靠性. 本研究通过引入菱形穿孔缺陷, 结合机器学习技术, 实现对石墨烯负泊松比效应的高效预测与优化, 为其在智能材料和柔性电子中的应用提供理论支持.
总论

2025, 74 (9): 090301.
doi: 10.7498/aps.74.20250083
摘要 +
量子导引, 作为一种特殊的量子关联, 相较于量子纠缠和贝尔非局域性, 展现出了特有的不对称性. 这种不对称性使得两个独立的光学模式之间, 通过量子导引交换可以建立单向或双向的导引, 这对构建非对称量子网络具有至关重要的意义. 本文提出了基于三组份与两组份纠缠态的全光学量子导引交换方案, 这一方案利用低噪声、高带宽的四波混频过程, 无测量地实现了传统方案中贝尔态测量的功能, 避免了光电和电光转换. 在导引交换操作后, 原本独立的无直接相互作用的两个纠缠态产生了量子导引. 具体研究了四波混频过程联合线性分束器或非线性分束器两种交换方案, 发现通过调节线性分束器的透射率和四波混频过程的增益, 可以实现三模间的量子导引. 这为单向量子通信和量子信息处理提供了新的可能性, 使得量子资源的利用更加安全和可控.

2025, 74 (9): 090303.
doi: 10.7498/aps.74.20241682
摘要 +
在光纤信道中, 连续变量量子密钥分发(continuous-variable quantum key distribution, CV-QKD)协议已经展现出获得更高安全码率的能力, 但是CV-QKD协议可容忍的信道衰减相对较低, 空间衍射、大气折射、信号衰减和湍流等实际因素都会影响空间信道中CV-QKD协议的可行性. 本文研究了实际空间信道环境下离散调制CV-QKD协议的可行性, 分析了空间衍射和大气衰减、湍流信道退化模型对于空间信道离散调制CV-QKD协议的影响, 讨论了卫星轨道高度、天顶角、接收器孔径、束腰尺寸和过量噪声等实际参数对空间离散调制CV-QKD的密钥生成率影响, 搭建了星地动态运动场景仿真分析了实际环境下空间信道离散调制CV-QKD协议的可行性, 仿真结果可为空间信道离散调制CV-QKD实验的设计和优化提供参考.

2025, 74 (9): 090701.
doi: 10.7498/aps.74.20241758
摘要 +
提出了一种基于光纤内马赫-曾德尔干涉仪结构的低频声传感方案, 其中传感光纤是由多模-超高数值孔径-多模光纤焊接级联而成的微型马赫-曾德尔干涉仪, 可有效提高光纤弯曲灵敏度; 然后将该干涉仪结构与聚对苯二甲酸乙二酯换能膜片进行组合, 使得传感光纤在受到声压作用时与膜片同步产生曲率变化, 间接增大了光纤接收声场的面积. 文章推导了该系统的声传感理论, 并通过实验进行了验证, 得到传感系统在65 Hz处信噪比约为57 dB, 最小可探测声压为267.9 ${\text{μPa/H}}{{\text{z}}^{{\text{1/2}}}}$; 在50—500 Hz的频率范围内, 对声波有较好响应, 信噪比均在40 dB以上, 信号较平坦. 该方案可显著提升传感系统声响应能力, 实现对低频声波的有效检测, 且具有制作简单、成本低的特点, 在声波探测相关应用领域具有较大的发展潜力.

2025, 74 (9): 090302.
doi: 10.7498/aps.74.20250025
摘要 +
本文深入地研究了一维高斯调制连续变量量子密钥分发系统在源强度误差下的现实安全性和性能表现. 详细地分析了源强度误差对协议参数估计过程的影响机制, 并基于发送端的三种现实假设, 提出相应数据优化方案, 以减轻源强度误差的负面影响. 同时, 综合考虑了源强度误差及有限码长效应, 以保障系统的现实安全性. 研究结果表明, 源强度误差不可忽视, 对于显著的强度波动, 系统的最大传输距离将减少约20 km. 因此, 在协议的实际实施过程中, 必须充分考虑源强度误差的影响, 并采取相应的措施来减少或消除这些误差. 本研究为现实条件下实施一维高斯调制连续变量量子密钥分发提供了理论依据, 为构建高效、低成本、小型化的量子通信网络探索了新方向.
电磁学、光学、声学、传热学、经典力学和流体动力学

2025, 74 (9): 094701.
doi: 10.7498/aps.74.20241553
摘要 +
强流重离子束驱动产生的高能量密度物质具有大体积、状态均匀、材料种类多样等显著特色, 为高能量密度物理研究提供了新的研究途径. 我国“十二五”规划建设的强流重离子加速器装置(HIAF)正加速推进, 将为重离子束驱动的高能量密度物理实验研究提供独特的实验平台与新的机遇. 本文基于HIAF上重离子束流参数特点, 利用自主研发的一维辐射流体程序Aardvark进行了数值模拟计算, 预测了铀离子束与铅靶相互作用下可产生的物质状态. 结果清晰展示了重离子束能量加载过程中, 靶物质的单位质量的能量沉积、温度、压强和密度的含时演化图像, 以及靶物质轴心处产生的大面积均匀区. 研究发现随着重离子束流强度的逐步提升, 靶物质的温度等状态参数呈现出非线性的增长趋势, 靶物质内部还引发了冲击波现象. 本研究还构建了铀离子束与多种靶物质相互作用产生的靶物质状态参数的数据库. 相关模拟数据不仅为HIAF上重离子束驱动的高能量密度物理实验研究规划提供重要的前期理论指导, 而且为深入研究高能量密度物质的产生、演化及其特性等提供了关键的理论支持. 该工作将为推动我国在强流重离子束驱动的高能量密度物理领域的研究工作发挥重要作用.

2025, 74 (9): 094205.
doi: 10.7498/aps.74.20250132
摘要 +
受激布里渊散射激光雷达探测技术具有高分辨、高信噪比、强抗干扰能力等优势, 在海水温-盐-声多参数联合测量方面具有重要应用前景. 受激布里渊散射是一个非线性动态过程, 其发生位置、峰值强度、谱线形状等随时间而变化. 本文基于分布式噪声模型对不同激光波长、脉宽及焦距的水中受激布里渊散射时域信号进行了理论模拟及分析, 研究了聚焦与非聚焦两种结构产生的Stokes脉冲特性. 结果表明: 波长越短, Stokes散射光的峰值功率越高, 在低入射能量时短脉冲获得更强的散射光, 而高入射能量时, 长脉冲更具优势, 焦距越大, 散射光峰值功率越低, 脉冲保真度越好; 随着入射能量的增加, 非聚焦结构的Stokes散射光脉冲宽度不断增加, 聚焦结构的Stokes散射光脉宽先减小后增大, 且存在受温度和能量影响的最佳压缩值, 低温时, Stokes散射光脉宽在阈值能量附近具有更好的压缩效果. 研究结果对提升受激布里渊散射激光雷达探测性能具有重要意义.

2025, 74 (9): 094206.
doi: 10.7498/aps.74.20241801
摘要 +
光-微波纠缠和光磁纠缠在混合量子网络构建和光学控制等方面有着重要的应用前景. 本文提出了一种在光磁力系统中利用相干反馈机制来增强光-微波纠缠和光磁纠缠的理论方案, 考虑在输入输出腔镜和镀反射膜的YIG桥中间插入薄膜的光磁力系统, 该系统包含了光、微波、机械振子和磁振子四种模式, 其中, 光和微波以机械振子为中介发生相互作用, 磁振子则通过磁偶极相互作用与微波耦合. 我们详细地研究了光-微波纠缠和光磁纠缠随各失谐量、各耦合强度、各衰减率的变化关系, 分析了最优的相干反馈条件、纠缠产生和纠缠转移的物理机制和条件, 讨论了加入反馈回路后的光-微波纠缠和光磁纠缠的增强. 研究结果表明, 加入相干反馈后, 光-微波纠缠和光磁纠缠在较宽的参数范围内均可获得显著且稳定的增强. 研究结果对构建混合量子网络时连接不同物理系统构成的节点、灵活操控磁振子的量子特性以及制备宏观量子态等方面提供了理论依据. 我们的研究结果不仅为实现混合量子网络提供了有力的理论支持, 还为光学控制、设计、检测和传输磁振子状态提供了更多的可能性, 便于未来能够更加灵活地操控和利用磁振子的量子特性.

2025, 74 (9): 094203.
doi: 10.7498/aps.74.20250067
摘要 +
高稳定双频激光光源是实现国家超精密测量能力的关键技术, 也是支撑高端装备制造质量的基石. 本文基于双声光调制方案搭建了高稳定双频激光光源及其频差稳定性评估系统. 通过研究双声光调制生成双频激光的机理, 逐级构建了频差稳定性劣化模型, 并针对性地进行了技术改进. 研究表明, 双频激光光源的频率稳定性与双频频差稳定性均会影响外差干涉测量的精度, 而双频频差稳定性由射频信号稳定性和功率放大器非线性失真决定. 本文通过设计高阶谐波滤除技术和基于铷钟的高稳定射频发生器, 将频差稳定性优化至 9 × 10–11@1 s, 6×10–10@1000 s, 双频频差稳定性对外差干涉测量精度的影响降低至亚飞米量级. 此时, 双频激光光源的频差稳定性指标充分满足皮米级激光干涉测量应用需求. 结合当前最先进的超稳腔稳频技术, 本文高稳定双频激光光源可以支持皮米甚至飞米级精度的外差干涉测量, 在超精密测量等领域具有重要应用前景.
综述

2025, 74 (9): 090304.
doi: 10.7498/aps.74.20241262
摘要 +
本文对液氮温区约瑟夫森电压标准的物理原理、相关应用研究的发展历史、研究现状以及未来发展方向进行了综述. 液氮温区工作的约瑟夫森电压标准具有移动性强、能耗小等特点, 便于应用推广. 本文描述了目前约瑟夫森量子电压标准的研究现状, 重点探讨了基于高温超导体发展液氮温区量子电压标准可能性, 以及目前在芯片制备方面存在的各种挑战. 在此基础上, 介绍了超导约瑟夫森结阵列的一种新型制备技术, 即聚焦氦离子辐照技术, 其在高一致性约瑟夫森结阵列的制备上可能具有优势, 是未来探索实现液氮温区量子电压计量标准的一种可能技术路线.
物理学交叉学科及有关科学技术领域

2025, 74 (9): 098501.
doi: 10.7498/aps.74.20250077
摘要 +
高时延分辨率的Hong-Ou-Mandel(HOM)干涉仪一直是量子精密测量领域的研究热点, 将其应用到量子陀螺仪中可以实现突破经典理论极限的角速度测量. 本文提出了基于频率纠缠双光子和级联HOM干涉仪的量子陀螺仪方案. 利用信号光和闲置光之间由于旋转存在的Sagnac效应, 将三轴角速度分别引入到级联HOM干涉仪中的对应测量臂, 利用级联HOM干涉图谱中凹陷位置与多个独立时延差之间的对应关系, 结合干涉可见度与量子Fisher信息理论, 得到3个独立时延差($ {\tau }_{1} $, $ {\tau }_{2} $, $ {\tau }_{3} $)的最大量子Fisher信息分别为(2, 0.1, 0.006). 通过引入测量不确定度, 得出时延值测量精度可以突破散粒噪声极限, 并结合时延差与旋转角速度的关系, 可实现三轴角速度的测量, 且测量精度可以超越经典光学陀螺仪, 方案可为后续量子陀螺仪在全球导航传感领域的进一步应用提供理论支持.