搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干反馈光磁力系统中光-微波纠缠与光磁纠缠的增强

史佳佳 刘晓敏 张冲 徐明慧 梁芸芸 张静

引用本文:
Citation:

相干反馈光磁力系统中光-微波纠缠与光磁纠缠的增强

史佳佳, 刘晓敏, 张冲, 徐明慧, 梁芸芸, 张静
cstr: 32037.14.aps.74.20241801

Enhancement of optomicrowave and optomagnonic entanglements in an optomagnomechanical system with coherent feedback

SHI Jiajia, LIU Xiaomin, ZHANG Chong, XU Minghui, LIANG Yunyun, ZHANG Jing
cstr: 32037.14.aps.74.20241801
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光-微波纠缠和光磁纠缠在混合量子网络构建和光学控制等方面有着重要的应用前景. 本文提出了一种在光磁力系统中利用相干反馈机制来增强光-微波纠缠和光磁纠缠的理论方案, 考虑在输入输出腔镜和镀反射膜的YIG桥中间插入薄膜的光磁力系统, 该系统包含了光、微波、机械振子和磁振子四种模式, 其中, 光和微波以机械振子为中介发生相互作用, 磁振子则通过磁偶极相互作用与微波耦合. 我们详细地研究了光-微波纠缠和光磁纠缠随各失谐量、各耦合强度、各衰减率的变化关系, 分析了最优的相干反馈条件、纠缠产生和纠缠转移的物理机制和条件, 讨论了加入反馈回路后的光-微波纠缠和光磁纠缠的增强. 研究结果表明, 加入相干反馈后, 光-微波纠缠和光磁纠缠在较宽的参数范围内均可获得显著且稳定的增强. 研究结果对构建混合量子网络时连接不同物理系统构成的节点、灵活操控磁振子的量子特性以及制备宏观量子态等方面提供了理论依据. 我们的研究结果不仅为实现混合量子网络提供了有力的理论支持, 还为光学控制、设计、检测和传输磁振子状态提供了更多的可能性, 便于未来能够更加灵活地操控和利用磁振子的量子特性.
    Optomicrowave entanglement and optomagnonic entanglement have significant applications in constructing hybrid quantum network and optical controlling magnons. In this paper, a theoretical scheme of enhancing optomicrowave and optomagnonic entanglements is proposed, based on a coherent-feedback-assisted optomagnomechanical (OMM) system. By inserting a thin membrane between the input-output mirror and the high-reflective-mirror-attached YIG bridge, the system consists of four kinds of modes: optical mode, microwave mode, mechanical mode, and magnon mode. In this system, optical mode and microwave mode interact with each other through the mechanical mode, while the magnon mode couples with the microwave mode through magnetic-dipole interaction. The entanglement is originally generated between optical mode and phonon mode under the two-mode squeezing mechanism (blue-detuned driven), then the generated entanglement is transferred to the optical mode and microwave mode through the state transfer mechanism (red-detuned driven) between the microwave mode and phonon mode and is further transferred to the optical mode and magnon mode by the magnetic-dipole interaction between the microwave mode and magnon mode. Adopting the negative logarithm criterion, the variations of the optomicrowave and optomagnonic entanglements with detuning, coupling strength, and decay rate are thoroughly investigated. Furthermore, the optimal coherent feedback parameters and the physical mechanisms of generating and transferring entanglement are analyzed, and the entanglement enhancements by adding the feedback loop are discussed. The results show that after adding coherent feedback, optomicrowave entanglement and optomagnonic entanglement can be enhanced effectively within a wide range of parameters and the enhancement can also be well maintained. Our findings provide a theoretical basis for connecting different nodes (different physical systems) to construct hybrid quantum networks, flexibly controlling the quantum properties of magnons, and preparing macroscopic quantum states.
      通信作者: 张静, zjj@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874248, 11874249)和山西省自然科学基金(批准号: 01801D121007)资助的课题.
      Corresponding author: ZHANG Jing, zjj@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874248, 11874249) and the Natural Science Foundation of Shanxi Province, China (Grant No. 01801D121007).
    [1]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [2]

    Yuan H Y, Cao Y S, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [3]

    Ast M, Steinlechner S, Schnabel R 2016 Phys. Rev. Lett. 117 180801Google Scholar

    [4]

    郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203Google Scholar

    Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203Google Scholar

    [5]

    Wang D Y, Bai C H, Xing Y, Liu S T, Zhang S, Wang H F 2020 Phys. Rev. A 102 043705Google Scholar

    [6]

    Bai C H, Wang D Y, Zhang S, Liu S T, Wang H F 2021 Phys. Rev. A 103 033508Google Scholar

    [7]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [8]

    Li J, Wallucks A, Benevides R, Fiaschi N, Hensen B, Alegre T P M, Gröblacher S 2020 Phys. Rev. A 102 032402Google Scholar

    [9]

    Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2020 Phys. Rev. Lett. 124 010511Google Scholar

    [10]

    Krastanov S, Raniwala H, Holzgrafe J, Jacobs K, Lončar M, Reagor M J, Englund D R 2021 Phys. Rev. Lett. 127 040503Google Scholar

    [11]

    Tian L 2013 Phys. Rev. Lett. 110 233602.Google Scholar

    [12]

    Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sørensen A, Usami K, Schliesser A, Polzik E S 2014 Nature 507 81Google Scholar

    [13]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [14]

    Chen Y T, Du L, Zhang Y, Wu J H 2021 Phys. Rev. A 103 053712Google Scholar

    [15]

    Qiu W Y, Cheng X H, Chen A X, Lan Y H, Nie W J 2022 Phys. Rev. A 105 063718Google Scholar

    [16]

    张秀龙, 鲍倩倩, 杨明珠, 田雪松 2018 物理学报 67 104203Google Scholar

    Zhang X L, Bao Q Q, Yang M Z, Tian X S 2018 Acta Phys. Sin. 67 104203Google Scholar

    [17]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 物理学报 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [18]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866Google Scholar

    [19]

    Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764Google Scholar

    [20]

    Di K, Tan S, Wang L Y, Cheng A Y, Wang X, Liu Y, Du J J 2023 Opt. Express 31 29491Google Scholar

    [21]

    Fan Z Y, Qian H, Zuo X, Li J 2023 Phys. Rev. A 108 023501Google Scholar

    [22]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014Google Scholar

    [23]

    Wiseman H M, Milburn G J 1994 Phys. Rev. A 49 4110Google Scholar

    [24]

    Lloyd S 2000 Phys. Rev. A 62 022108Google Scholar

    [25]

    Gough J E, James M R, Nurdin H I 2010 Phys. Rev. A 81 023804Google Scholar

    [26]

    Jacobs K, Wang X T, Wiseman H M 2014 New J. Phys. 16 073036Google Scholar

    [27]

    Harwood A, Brunelli M, Serafini A 2021 Phys. Rev. A 103 023509Google Scholar

    [28]

    Li J, Li G, Zippilli S, Vitali D, Zhang T C 2017 Phys. Rev. A 95 043819Google Scholar

    [29]

    Peng R, Zhao C S, Yang Z, Yang J Y, Zhou L 2023 Phys. Rev. A 107 013507Google Scholar

    [30]

    Xin J, Pan X Z, Lu X M, Kong J, Li G L, Li X M 2020 Phys. Rev. Appl. 14 024015Google Scholar

    [31]

    Zheng Q J, Zhong W X, Cheng G L, Chen A X 2023 Results Phys. 48 106422Google Scholar

    [32]

    Li J, Zhu S Y 2019 New J. Phys. 21 085001Google Scholar

    [33]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [34]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

  • 图 1  (a)加入相干反馈回路的光磁力系统示意图, 其中CBS (controllable beam splitter)是可控分束器, HRM (highly reflective mirror)是高反镜; (b)各个模式之间的相互作用, 其中蓝色和红色实线分别对应双模压缩型和分束器型相互作用; (c)各个模式之间的频率关系

    Fig. 1.  (a) Optomagnomechanics system scheme with a coherent feedback loop, where CBS represents a controllable beam splitter, and HRM represents a highly reflective mirror; (b) the interactions between different modes, where the blue and red solid lines correspond to the two-mode squeezeing and beam-splitter interactions; (c) the frequency relationship between different modes.

    图 2  Eac (a), Eam (b), Eab (c), Ecb (d)随$ {\tilde \varDelta _a} $与$ {\tilde \varDelta _c} $的变化

    Fig. 2.  Eac (a), Eam (b), Eab (c), Ecb (d) versus $ {\tilde \varDelta _a} $and $ {\tilde \varDelta _c} $.

    图 3  EacEam随相干反馈参数$ r $和$ \theta $的变化 (a) $ \theta = \pi $; (b) $ r = 0.99 $

    Fig. 3.  Eac and Eam versus the coherent feedback parameters $ r $ and $ \theta $: (a) $ \theta = \pi $; (b) $ r = 0.99 $.

    图 4  EacEamGab (a), Gcb (b), gcm (c)的变化, 图(b)与图(c)中, 实(虚)线对应右(左)侧的纵轴

    Fig. 4.  Eac and Eam versus Gab (a), Gcb (b), gcm (c). In subgraphs (b) and (c). The solid (dashed) line corresponds to the right (left) vertical axis.

    图 5  EacEam随衰减率$ {\kappa _a} $(a), $ {\kappa _c} $(b), $ {\kappa _m} $(c)的变化, 其中实(虚)线对应右(左)侧的纵轴

    Fig. 5.  Eac and Eam versus the decay rates $ {\kappa _a} $(a), $ {\kappa _c} $(b), $ {\kappa _m} $(c). The solid (dashed) line corresponds to the right (left) vertical axis.

    图 6  EacEam随$ {\gamma _b} $(a)和T(b)的变化, 图(a)中实(虚)线对应右(左)侧的纵轴

    Fig. 6.  Eac and Eam versus $ {\gamma _b} $(a) and T (b). In panel (a), the solid (dashed) line corresponds to the right (left) vertical axis.

  • [1]

    Lachance-Quirion D, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar

    [2]

    Yuan H Y, Cao Y S, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [3]

    Ast M, Steinlechner S, Schnabel R 2016 Phys. Rev. Lett. 117 180801Google Scholar

    [4]

    郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞 2024 物理学报 73 074203Google Scholar

    Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G, Gao J R 2024 Acta Phys. Sin. 73 074203Google Scholar

    [5]

    Wang D Y, Bai C H, Xing Y, Liu S T, Zhang S, Wang H F 2020 Phys. Rev. A 102 043705Google Scholar

    [6]

    Bai C H, Wang D Y, Zhang S, Liu S T, Wang H F 2021 Phys. Rev. A 103 033508Google Scholar

    [7]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [8]

    Li J, Wallucks A, Benevides R, Fiaschi N, Hensen B, Alegre T P M, Gröblacher S 2020 Phys. Rev. A 102 032402Google Scholar

    [9]

    Zhong C C, Wang Z X, Zou C L, Zhang M Z, Han X, Fu W, Xu M R, Shankar S, Devoret M H, Tang H X, Jiang L 2020 Phys. Rev. Lett. 124 010511Google Scholar

    [10]

    Krastanov S, Raniwala H, Holzgrafe J, Jacobs K, Lončar M, Reagor M J, Englund D R 2021 Phys. Rev. Lett. 127 040503Google Scholar

    [11]

    Tian L 2013 Phys. Rev. Lett. 110 233602.Google Scholar

    [12]

    Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sørensen A, Usami K, Schliesser A, Polzik E S 2014 Nature 507 81Google Scholar

    [13]

    Li J, Zhu S Y, Agarwal G S 2018 Phys. Rev. Lett. 121 203601Google Scholar

    [14]

    Chen Y T, Du L, Zhang Y, Wu J H 2021 Phys. Rev. A 103 053712Google Scholar

    [15]

    Qiu W Y, Cheng X H, Chen A X, Lan Y H, Nie W J 2022 Phys. Rev. A 105 063718Google Scholar

    [16]

    张秀龙, 鲍倩倩, 杨明珠, 田雪松 2018 物理学报 67 104203Google Scholar

    Zhang X L, Bao Q Q, Yang M Z, Tian X S 2018 Acta Phys. Sin. 67 104203Google Scholar

    [17]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 物理学报 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [18]

    Fan Z Y, Qiu L, Gröblacher S, Li J 2023 Laser Photonics Rev. 17 2200866Google Scholar

    [19]

    Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y, Yang R C 2023 Opt. Express 31 34764Google Scholar

    [20]

    Di K, Tan S, Wang L Y, Cheng A Y, Wang X, Liu Y, Du J J 2023 Opt. Express 31 29491Google Scholar

    [21]

    Fan Z Y, Qian H, Zuo X, Li J 2023 Phys. Rev. A 108 023501Google Scholar

    [22]

    Fan Z Y, Qian H, Li J 2023 Quantum Sci. Technol. 8 015014Google Scholar

    [23]

    Wiseman H M, Milburn G J 1994 Phys. Rev. A 49 4110Google Scholar

    [24]

    Lloyd S 2000 Phys. Rev. A 62 022108Google Scholar

    [25]

    Gough J E, James M R, Nurdin H I 2010 Phys. Rev. A 81 023804Google Scholar

    [26]

    Jacobs K, Wang X T, Wiseman H M 2014 New J. Phys. 16 073036Google Scholar

    [27]

    Harwood A, Brunelli M, Serafini A 2021 Phys. Rev. A 103 023509Google Scholar

    [28]

    Li J, Li G, Zippilli S, Vitali D, Zhang T C 2017 Phys. Rev. A 95 043819Google Scholar

    [29]

    Peng R, Zhao C S, Yang Z, Yang J Y, Zhou L 2023 Phys. Rev. A 107 013507Google Scholar

    [30]

    Xin J, Pan X Z, Lu X M, Kong J, Li G L, Li X M 2020 Phys. Rev. Appl. 14 024015Google Scholar

    [31]

    Zheng Q J, Zhong W X, Cheng G L, Chen A X 2023 Results Phys. 48 106422Google Scholar

    [32]

    Li J, Zhu S Y 2019 New J. Phys. 21 085001Google Scholar

    [33]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [34]

    Plenio M B 2005 Phys. Rev. Lett. 95 090503Google Scholar

  • [1] 徐笑吟, 刘胜帅, 荆杰泰. 基于四波混频过程的纠缠光放大. 物理学报, 2022, 71(5): 050301. doi: 10.7498/aps.71.20211324
    [2] 仲银银, 潘晓州, 荆杰泰. 级联四波混频相干反馈控制系统量子纠缠特性. 物理学报, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [3] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [4] 李海, 邹健, 邵彬, 陈雨, 华臻. 库的量子关联相干辅助系统能量提取的研究. 物理学报, 2019, 68(4): 040201. doi: 10.7498/aps.68.20181525
    [5] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [6] 丛美艳, 杨晶, 黄燕霞. 在不同初态下Dzyaloshinskii-Moriya相互作用及内禀退相干对海森伯系统的量子纠缠的影响. 物理学报, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [7] 汪仲清, 赵小奇, 周贤菊. 原子在弱相干场光纤耦合腔系统中的纠缠特性. 物理学报, 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [8] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [9] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [10] 卢道明. 三个耦合腔系统中的纠缠特性. 物理学报, 2012, 61(15): 150303. doi: 10.7498/aps.61.150303
    [11] 夏建平, 任学藻, 丛红璐, 王旭文, 贺树. 两量子比特与谐振子相耦合系统中的量子纠缠演化特性. 物理学报, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [12] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [13] 卢道明. 原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [14] 王淑静, 马善钧. 由光分束器和起偏器混合产生的三模纠缠态表象. 物理学报, 2011, 60(3): 030302. doi: 10.7498/aps.60.030302
    [15] 刘小娟, 刘一曼, 周并举. 原子与双模相干强场依赖强度耦合多光子过程中纠缠量度与制备. 物理学报, 2010, 59(12): 8518-8525. doi: 10.7498/aps.59.8518
    [16] 陈宇, 邹健, 李军刚, 邵彬. 耗散环境下三原子之间稳定纠缠的量子反馈控制. 物理学报, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [17] 熊恒娜, 郭 红, 江 健, 陈 俊, 唐丽艳. 原子间纠缠和光场模间纠缠的对应关系. 物理学报, 2006, 55(6): 2720-2725. doi: 10.7498/aps.55.2720
    [18] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [19] 周青春, 祝世宁. Λ型三能级原子与数态单模光场互作用系统的纠缠特性. 物理学报, 2005, 54(5): 2043-2048. doi: 10.7498/aps.54.2043
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  390
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-31
  • 修回日期:  2025-02-20
  • 上网日期:  2025-02-27

/

返回文章
返回