-
基于原子四波混频的光参量放大器是实现强度差压缩态光场的最有效手段之一. 然而, 受限于原子蒸气对光场的吸收损耗, 其输出的压缩度仍有待提升. 光参量放大器输出的非经典光场部分反馈回输入端口, 可实现其输出光场量子特性的增强. 本文对相干反馈的相敏放大器开展理论分析, 研究了其输出光场的强度差压缩与反馈强度、强度增益和损耗的依赖关系. 研究结果表明, 在无损耗的理想情况下, 通过调控反馈强度和位相可实现无穷大的压缩输出. 在考虑实际的实验参数条件下, 此方案也可在一定的反馈强度范围内和特定的位相条件下, 实现显著的压缩增强. 本研究结果可为实验实现高质量非经典光场提供有益的参考.The intensity-difference squeezed state is an important concept in quantum optics, which is not only of great significance for fundamental research in quantum physics, but also an important quantum resource in the fields of quantum communication, quantum computing, and quantum precision measurement. The optical parametric amplifier based on atomic four-wave mixing is one of the most effective means to achieve intensity-difference squeezed light. However, due to the absorption loss of atomic vapor in the light field, the output squeezing still needs improving. By feeding the non-classical optical field from the optical parametric amplifier back to the input port, the quantum characteristics of its output optical field can be enhanced. However, the intensity-difference squeezing enhancement from a phase-insensitive amplifier is experimentally realized based on coherent feedback control. The intensity-difference squeezing enhancement of the phase-sensitive amplifier has not been discussed. In this work, a two-port coherent feedback-controlled phase-sensitive amplifier is analyzed theoretically. The dependence of the intensity-difference squeezing, respectively, on the feedback intensity, the intensity gain of the optical parametric amplifier, and the losses of the system are investigated. For the ideal case in which the losses of the system are ignored, infinite squeezing can be achieved by adjusting the strength and phase of feedback. Considering the actual atomic absorption losses, squeezing enhancement can also be achieved over a wide range of intensity gains within a certain feedback intensity range. In addition, the squeezing enhancement is quite efficient for the medium intensity gain range. The intensity-difference squeezing enhancement strongly depends on the absorption loss of atomic vapor. The smaller the absorption loss, the more significant the squeezing enhancement effect is. Furthermore, the experimental feasibility of this scheme is also considered in detail. Our research can provide useful references for achieving high-quality non classical light fields in experiment, which may find applications in quantum information processing and quantum precise measurement.
-
Keywords:
- optical parametric amplifiers /
- squeezed light field /
- coherent feedback control /
- squeezing enhancement
[1] Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar
[2] Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar
[3] Marino M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859Google Scholar
[4] Wu S H, Bao G Z, Guo J X, Chen J, Du W, Shi M W, Yang P Y, Chen L Q, Zhang W P 2023 Sci. Adv. 9 1760Google Scholar
[5] Liu S S, Lou Y B, Chen Y X, Jing J T 2022 Phys. Rev. Lett. 128 060503Google Scholar
[6] Wang D, Zhang Y, Xiao M 2013 Phys. Rev. A 87 023834Google Scholar
[7] 韩亚帅, 张啸, 张昭, 屈军, 王军民 2022 物理学报 71 074202Google Scholar
Han Y S, Zhang X, Zhang Z, Qu J, Wang J M 2022 Acta Phys. Sin. 71 074202Google Scholar
[8] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar
Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar
[9] Shang Y N, Jia X J, Shen Y M, Xie C D, Peng K C 2010 Opt. Lett. 35 853Google Scholar
[10] Xin J, Qi J, Jing J T 2017 Opt. Lett. 42 366Google Scholar
[11] Lou Y B, Chen Y X, Wang J B, Liu S S, Jing J T 2023 Sci. China Phys. Mech. 66 250311Google Scholar
[12] Gough J E, Wildfeuer S 2009 Phys. Rev. A 80 042107Google Scholar
[13] Iida S, Yukawa M, Yonezawa H, Yamamoto N, Furusawa A 2012 IEEE Trans. Autom. Control 57 2045Google Scholar
[14] Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D, Peng K C 2012 Phys. Rev. A 85 040305Google Scholar
[15] Pan X C, Chen H, Wei T X, Zhang J, Marino A M, Treps N, Glasser R T, Jing J T 2018 Phys. Rev. B 97 161115Google Scholar
[16] Zhong Y Y, Jing J T 2020 Phys. Rev. A 101 023813Google Scholar
[17] Fang Y M, Jing J T 2015 New J. Phys. 17 023027Google Scholar
[18] Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar
-
图 2 理想情况下强度差压缩随分束器反射率k的变化曲线. IDS为强度差压缩; PSA为相敏放大器; CFC-PSA为相干反馈控制的相位灵敏放大器
Fig. 2. Curve of intensity-difference squeezing versus reflectivity k of the beam splitter under the ideal condition. IDS represents intensity-difference squeezing; PSA represents phase-sensitive amplifier; CFC-PSA represents coherent feedback-controlled phase-sensitive amplifier.
-
[1] Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar
[2] Wu L A, Kimble H J, Hall J L, Wu H F 1986 Phys. Rev. Lett. 57 2520Google Scholar
[3] Marino M, Pooser R C, Boyer V, Lett P D 2009 Nature 457 859Google Scholar
[4] Wu S H, Bao G Z, Guo J X, Chen J, Du W, Shi M W, Yang P Y, Chen L Q, Zhang W P 2023 Sci. Adv. 9 1760Google Scholar
[5] Liu S S, Lou Y B, Chen Y X, Jing J T 2022 Phys. Rev. Lett. 128 060503Google Scholar
[6] Wang D, Zhang Y, Xiao M 2013 Phys. Rev. A 87 023834Google Scholar
[7] 韩亚帅, 张啸, 张昭, 屈军, 王军民 2022 物理学报 71 074202Google Scholar
Han Y S, Zhang X, Zhang Z, Qu J, Wang J M 2022 Acta Phys. Sin. 71 074202Google Scholar
[8] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞 2019 物理学报 68 094205Google Scholar
Yang R G, Zhang C X, Li N, Zhang J, Gao J R 2019 Acta Phys. Sin. 68 094205Google Scholar
[9] Shang Y N, Jia X J, Shen Y M, Xie C D, Peng K C 2010 Opt. Lett. 35 853Google Scholar
[10] Xin J, Qi J, Jing J T 2017 Opt. Lett. 42 366Google Scholar
[11] Lou Y B, Chen Y X, Wang J B, Liu S S, Jing J T 2023 Sci. China Phys. Mech. 66 250311Google Scholar
[12] Gough J E, Wildfeuer S 2009 Phys. Rev. A 80 042107Google Scholar
[13] Iida S, Yukawa M, Yonezawa H, Yamamoto N, Furusawa A 2012 IEEE Trans. Autom. Control 57 2045Google Scholar
[14] Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D, Peng K C 2012 Phys. Rev. A 85 040305Google Scholar
[15] Pan X C, Chen H, Wei T X, Zhang J, Marino A M, Treps N, Glasser R T, Jing J T 2018 Phys. Rev. B 97 161115Google Scholar
[16] Zhong Y Y, Jing J T 2020 Phys. Rev. A 101 023813Google Scholar
[17] Fang Y M, Jing J T 2015 New J. Phys. 17 023027Google Scholar
[18] Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar
计量
- 文章访问数: 1549
- PDF下载量: 46
- 被引次数: 0