搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于参量放大器的铯原子D2线明亮偏振压缩光源的产生

左冠华 杨晨 赵俊祥 田壮壮 朱诗尧 张玉驰 张天才

引用本文:
Citation:

基于参量放大器的铯原子D2线明亮偏振压缩光源的产生

左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才

Generation of bright polarization squeezed light at cesium D2 line based on optical parameter amplifier

Zuo Guan-Hua, Yang Chen, Zhao Jun-Xiang, Tian Zhuang-Zhuang, Zhu Shi-Yao, Zhang Yu-Chi, Zhang Tian-Cai
PDF
HTML
导出引用
  • 原子线共振波段量子光源的制备在精密测量以及研究非经典光与物质的相互作用方面具有重要意义. 本文报道了在实验上首次利用低于阈值的环形光学参量放大器产生铯原子D2线的明亮偏振压缩光. 实验上利用参量放大过程产生了波长852 nm附近三个斯托克斯参量$ {\hat S_1} $, $ {\hat S_2} $$ {\hat S_3} $的偏振压缩光源, 在频率为2—10 MHz范围内, 实测最大压缩达4.3 dB, 考虑探测及传输等因素, 参量放大器出射的压缩为5.2 dB(即标准量子噪声基准的30.2%). 该原子线共振的量子光源在量子存储、光与原子相互作用和超越标准量子极限的精密测量等领域具有重要的应用价值.
    Quantum light field is very important source in quantum optics and quantum precision measurement, and the generation of quantum state of light is significant in quantum storage, quantum metrology and studying the interaction between nonclassical light and matter. The polarization squeezed light near the atomic transition has great potential applications in the precise measurement of magnetic field as its Stokes parameter’s noise is less than the standard quantum limit (SQL). Therefore, it is very important to generate the polarization squeezed light at atomic transition. We report in this paper the experiment on generating the bright polarization squeezed light at cesium D2 line based on an optical parametric amplifier (OPA). The experimental system includes the following three parts: 1) a second harmonic generator (SHG), 2) an OPA, and 3) a detection system. The OPA has a similar structure to the SHG system with four-mirror ring cavity in which only the fundamental wave is resonant. A nonlinear type-I periodically-poled KTiOPO4 (PPKTP) crystal with a size of 1 mm × 2 mm × 20 mm is placed in the center of the cavity waist and its temperature is precisely controlled. The OPA is pumped by the 426 nm blue light which is generated by SHG and this OPA is operating below the threshold. The squeezed light at cesium D2 line is produced when the crystal temperature is at its optimum phase-matching temperature and the OPA cavity is stabilized based on resonance. The generated squeezed light is combined with the coherent light on a polarizing beam splitter (PBS) to obtain the polarized squeezed light for either ${\hat S_2} $ or ${\hat S_3} $ of the Stokes parameter by controlling the type of squeezed light (parametric amplification or de-amplification) and the relative phase (0 or π/2) of two beams. And for ${\hat S_1} $, the amplitude-squeezed light (corresponding to parametric de-amplification) is the ${\hat S_1} $ squeezed light. The maximum squeezing of 4.3 dB (actually 5.2 dB) is observed in a bandwidth range of 2-10 MHz. At present, the squeezing is mainly limited by the escape efficiency of OPA and the detection efficiency, and the OPA escape efficiency is mainly limited by the blue-light-induced loss of PPKTP crystal and the thermal effect of crystal. In the optical atomic magnetometer, increasing the signal-to-noise ratio (SNR) of the system can effectively improve the sensitivity of the magnetic field measurement. This bright polarization squeezed light is expected to be used in the optical cesium atomic magnetometer to improve the sensitivity of the magnetometer.
      通信作者: 张玉驰, yczhang@sxu.edu.cn ; 张天才, tczhang@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017TFA0304502)、国家自然科学基金(批准号: 11634008, 11674203, 11574187)和山西省“1331工程”重点学科建设计划资助的课题
      Corresponding author: Zhang Yu-Chi, yczhang@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of Chnia (Grant No. 2017TFA0304502), the National Natural Science Foundation of China (Grant Nos. 11634008, 11674203, 11574187), and Shanxi Province “1331Project” Key Discipline Construction Program
    [1]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602Google Scholar

    [2]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472Google Scholar

    [3]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020Google Scholar

    [4]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [5]

    Seshadreesan K P, Anisimov P M, Lee H, Dowling J P 2011 New J. Phys. 13 083026Google Scholar

    [6]

    Hou L L, Sui Y X, Wang S, Xu X F 2019 Chin. Phys. B 28 044203Google Scholar

    [7]

    Kr4420 1990 Phys. Rev. A 42 4177Google Scholar

    [8]

    Gao J R, Cui F Y, Xue C Y, Xie C D, Peng K C 1998 Opt. Lett. 23 870Google Scholar

    [9]

    Hong C K, Mandel L 1985 Phys. Rev. A 32 974Google Scholar

    [10]

    Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601Google Scholar

    [11]

    Zhang T C, Hou Z J, Wang J M, Xie C D, Peng K C 1996 Chin. Phys. Lett. 13 734Google Scholar

    [12]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [13]

    Wolfgramm F, Cerè A, Beduini F A, Predojević A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [14]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153Google Scholar

    [15]

    Chirkin A S, Orlov A A, Parashchuk D Y 1993 Quantum Electron. 23 870Google Scholar

    [16]

    Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar

    [17]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [18]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [19]

    Wen X, Han Y S, Liu J Y, He J, Wang J M 2017 Opt. Express 25 020737Google Scholar

    [20]

    Heersink J, Gaber T, Lorenz S, Glöckl O, Korolkova N, Leuchs G 2003 Phys. Rev. A 68 013815Google Scholar

    [21]

    Barreiro S, Valente P, Failache H, Lezama A 2011 Phys. Rev. A 84 033851Google Scholar

    [22]

    Bowen W P, Treps N, Buchler B C et al. 2003 Phys. Rev. A 67 032302

    [23]

    Agha I H, Messin G, Grangier P 2010 Opt. Express 18 4198Google Scholar

    [24]

    Matsko A B, Novikova I, Welch G R, Budker D, Kimball D F, Rochester S M 2002 Phys. Rev. A 66 043815Google Scholar

    [25]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [26]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [27]

    Schnabel R, Bowen W P, Treps N, Ralph T C, Bachor H-A, Lam P K 2003 Phys. Rev. A 67 012316Google Scholar

    [28]

    田剑锋 2018 博士学位论文(太原: 山西大学)

    Tian J F 2018 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [29]

    Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F, Zhang T C 2017 Chin. Phys. B 26 124206Google Scholar

    [30]

    Tian J F, Yang C, Xue J, Zhang Y C, Li G, Zhang T C 2016 J. Opt. 18 055506Google Scholar

    [31]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [32]

    Black E D 2001 Am. J. Phys. 69 79Google Scholar

    [33]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar

    [34]

    Hansson G, Karlsson H, Wang S, Laurell F 2000 Appl. Opt. 39 5058Google Scholar

  • 图 1  量子化的庞加莱球和斯托克斯参量图示

    Fig. 1.  Diagrammatic illustration of the quantum Poincaré sphere and Stokes parameters.

    图 2  四个斯托克斯参量的测量装置. PBS, 偏振分束棱镜; $\lambda /2$$\lambda /4$分别是半波片和四分之波片; 加号和减号分别代表电流信号相加减; SA, 频谱分析仪

    Fig. 2.  Apparatus required to measure four Stokes parameters. PBS, polarizing beam splitter; $\lambda /2$ and $\lambda /4$, half-and quarter-wave plates, respectively; the plus and minus signs imply that an electrical sum or difference has been taken; SA, Spectrum analyzer.

    图 3  明亮偏振压缩光合成装置

    Fig. 3.  Apparatus used to produce the bright polarizationsqueezed beam.

    图 4  实验装置图

    Fig. 4.  Schematic of experimental setup.

    图 5  参量增益随泵浦光功率的变化, 其中绿(红)色实点是参量放大(缩小)的实验结果. 实线是理论拟合结果

    Fig. 5.  Parametric gain versus pump power, where green (red) solid dots denote the experimental results of amplified (deamplified) gain. The solid lines represent the theoretical results.

    图 6  扫描本地光相位时得到的噪声. 谱仪中心频率为2 MHz, 分辨率带宽(RBW)为100 kHz, 视频带宽(VBW)为500 Hz

    Fig. 6.  Noise power when scanning the local beam phase. The spectrum analyzer’s center frequency is 2 MHz with RBW = 100 kHz and VBW = 500 Hz.

    图 7  不同斯托克斯参量的噪声测量结果. 其中左图是测量的斯托克斯参量的噪声谱, 已归一化到标准量子噪声基准. 右图是与之对应的噪声分布球及投影噪声分布, 其中蓝色椭球体代表噪声球, 椭圆表示噪声球投影到各个面上的噪声分布. 红色虚线表示相干光对应的噪声, 蓝色实线表示偏振压缩光 (a) ${\hat S_2}$压缩; (b) ${\hat S_3}$压缩; (c) ${\hat S_1}$压缩

    Fig. 7.  Measured noise results for different Stokes parameters. The results on the left are the measured variance spectra of Stokes parameters normalized to quantum noise limit. The results on the right are the corresponding diagrammatic illustration of the Stokes parameters’ variance ellipsoid, and the blue ellipsoid is the noise ball, and these ellipses are the noise projections at each plane. The red dashed circles represent the noise of the coherent state and the blue solid circles show the squeezing. (a) Squeezing for Stokes parameter ${\hat S_2}$; (b) Squeezing for Stokes parameter ${\hat S_3}$; (c) Squeezing for Stokes parameter ${\hat S_1}$.

    表 1  影响OPA产生压缩和探测过程的实验参数

    Table 1.  Factors of effecting squeezing from the OPA and the detection system.

    参数
    传输效率0.99
    量子效率0.95
    干涉效率0.986
    逃逸率0.73
    归一化泵浦因子0.71
    归一化测量频率0.18
    下载: 导出CSV
  • [1]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602Google Scholar

    [2]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472Google Scholar

    [3]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020Google Scholar

    [4]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409Google Scholar

    [5]

    Seshadreesan K P, Anisimov P M, Lee H, Dowling J P 2011 New J. Phys. 13 083026Google Scholar

    [6]

    Hou L L, Sui Y X, Wang S, Xu X F 2019 Chin. Phys. B 28 044203Google Scholar

    [7]

    Kr4420 1990 Phys. Rev. A 42 4177Google Scholar

    [8]

    Gao J R, Cui F Y, Xue C Y, Xie C D, Peng K C 1998 Opt. Lett. 23 870Google Scholar

    [9]

    Hong C K, Mandel L 1985 Phys. Rev. A 32 974Google Scholar

    [10]

    Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601Google Scholar

    [11]

    Zhang T C, Hou Z J, Wang J M, Xie C D, Peng K C 1996 Chin. Phys. Lett. 13 734Google Scholar

    [12]

    Andersen U L, Gehring T, Marquardt C, Leuchs G 2016 Phys. Scr. 91 053001Google Scholar

    [13]

    Wolfgramm F, Cerè A, Beduini F A, Predojević A, Koschorreck M, Mitchell M W 2010 Phys. Rev. Lett. 105 053601Google Scholar

    [14]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153Google Scholar

    [15]

    Chirkin A S, Orlov A A, Parashchuk D Y 1993 Quantum Electron. 23 870Google Scholar

    [16]

    Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar

    [17]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [18]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [19]

    Wen X, Han Y S, Liu J Y, He J, Wang J M 2017 Opt. Express 25 020737Google Scholar

    [20]

    Heersink J, Gaber T, Lorenz S, Glöckl O, Korolkova N, Leuchs G 2003 Phys. Rev. A 68 013815Google Scholar

    [21]

    Barreiro S, Valente P, Failache H, Lezama A 2011 Phys. Rev. A 84 033851Google Scholar

    [22]

    Bowen W P, Treps N, Buchler B C et al. 2003 Phys. Rev. A 67 032302

    [23]

    Agha I H, Messin G, Grangier P 2010 Opt. Express 18 4198Google Scholar

    [24]

    Matsko A B, Novikova I, Welch G R, Budker D, Kimball D F, Rochester S M 2002 Phys. Rev. A 66 043815Google Scholar

    [25]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [26]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [27]

    Schnabel R, Bowen W P, Treps N, Ralph T C, Bachor H-A, Lam P K 2003 Phys. Rev. A 67 012316Google Scholar

    [28]

    田剑锋 2018 博士学位论文(太原: 山西大学)

    Tian J F 2018 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [29]

    Tian J F, Zuo G H, Zhang Y C, Li G, Zhang P F, Zhang T C 2017 Chin. Phys. B 26 124206Google Scholar

    [30]

    Tian J F, Yang C, Xue J, Zhang Y C, Li G, Zhang T C 2016 J. Opt. 18 055506Google Scholar

    [31]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [32]

    Black E D 2001 Am. J. Phys. 69 79Google Scholar

    [33]

    Zhang T C, Goh K W, Chou C W, Lodahl P, Kimble H J 2003 Phys. Rev. A 67 033802Google Scholar

    [34]

    Hansson G, Karlsson H, Wang S, Laurell F 2000 Appl. Opt. 39 5058Google Scholar

  • [1] 韩亚帅, 张啸, 张昭, 屈军, 王军民. 基于级联光参量放大器的碱金属原子跃迁线波段压缩光源分析. 物理学报, 2022, 71(7): 074202. doi: 10.7498/aps.71.20212131
    [2] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [3] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [4] 吕明涛, 延明月, 艾保全, 高天附, 郑志刚. 过阻尼布朗棘轮的斯托克斯效率研究. 物理学报, 2017, 66(22): 220501. doi: 10.7498/aps.66.220501
    [5] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究. 物理学报, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [6] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像. 物理学报, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [7] 王美洁, 贾维国, 张思远, 门克内木乐, 杨军, 张俊萍. 低双折射光纤中拉曼增益对光偏振态的影响. 物理学报, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [8] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器. 物理学报, 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [9] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质. 物理学报, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [10] 马骏, 袁操今, 冯少彤, 聂守平. 基于数字全息及复用技术的全场偏振态测试方法. 物理学报, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [11] 申向伟, 余重秀, 桑新柱, 苑金辉, 韩颖, 夏长明, 侯蓝田, 饶芬, 夏民, 尹霄丽. 光子晶体光纤中高效的反斯托克斯信号产生. 物理学报, 2012, 61(4): 044203. doi: 10.7498/aps.61.044203
    [12] 邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华. 室温掺铒光纤放大器中实现参量控制无损耗光速减慢传输. 物理学报, 2012, 61(9): 094204. doi: 10.7498/aps.61.094204
    [13] 赵超樱, 谭维翰. 色散效应对光学参量放大器量子起伏特性的影响. 物理学报, 2010, 59(4): 2498-2504. doi: 10.7498/aps.59.2498
    [14] 曾曙光, 张彬. 光参量啁啾脉冲放大的逆问题. 物理学报, 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [15] 邓文武, 郑 俊, 谭华堂, 李高翔. 非简并四波混频体系中双模光场的纠缠特性. 物理学报, 2007, 56(12): 6970-6975. doi: 10.7498/aps.56.6970
    [16] 董传华. 在与原子相互作用中光偏振态的量子描述及其演化. 物理学报, 2005, 54(2): 687-695. doi: 10.7498/aps.54.687
    [17] 孙涛, 黄锦圣, 张伟力, 王清月. 输出13.5fs激光脉冲的非共线式光参量放大器. 物理学报, 2002, 51(10): 2281-2285. doi: 10.7498/aps.51.2281
    [18] 唐立家, 蔡希洁, 林尊琪. “神光Ⅱ”主放大器中的波形控制. 物理学报, 2001, 50(6): 1075-1079. doi: 10.7498/aps.50.1075
    [19] 谭维翰, 张卫平, 谭微思. 通过注入激光提高腔内参量放大光的压缩. 物理学报, 1990, 39(10): 1555-1562. doi: 10.7498/aps.39.1555
    [20] 沈光铭, 高天明, 茅经怀. 基波激励和次谐波激励参量放大器特性的分析. 物理学报, 1963, 19(6): 384-397. doi: 10.7498/aps.19.384
计量
  • 文章访问数:  8974
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2019-09-07
  • 上网日期:  2019-12-05
  • 刊出日期:  2020-01-05

/

返回文章
返回