搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温掺铒光纤放大器中实现参量控制无损耗光速减慢传输

邱巍 马英驰 吕品 刘典 徐晓娟 张程华

引用本文:
Citation:

室温掺铒光纤放大器中实现参量控制无损耗光速减慢传输

邱巍, 马英驰, 吕品, 刘典, 徐晓娟, 张程华

Slowdown of group velocity of light pulse in erbium-doped optical fiber amplifier under no absorption loss at a room temperature

Qiu Wei, Ma Ying-Chi, Lü Pin, Liu Dian, Xu Xiao-Juan, Zhang Cheng-Hua
PDF
导出引用
  • 本文对掺铒光纤放大器中的光速减慢传输系统进行深入研究,提出一种直接利用掺铒光纤放大器中抽运光 强度和掺铒光纤长度,通过优化控制参量来降低信号光强度损耗系数,从而可以实现无强度损耗光速减慢传输, 研究结果表明:当抽运光功率为3.5 mW时,信号光强度损耗系数近似为零;当抽运光关闭时,掺铒光纤长度为 0.1 m时,信号光强度损耗系数近似为零.
    Because of the absorption of erbium-doped optical fiber, the group velocity of the optical pulse propagation is slowed down and the intensity of signal is reduced, which brings more difficulties to the actual measurement of slow light and its application in communications, such as the distortion and the low measurement.Therefore only after the group velocity slowdown of light pulse in erbium-doped optical fiber under no absorption loss is realized, can the slow light technology really have the practical application. We investigate the erbium-doped optical fiber amplifier deeply and develop a technology, in which the different pump powers and fiber lengths are used to reduce the signal loss through theoretical calculation and realize the group velocity slowdown of light pulse. The results show that no absorption loss is realized at a pump power of 3.5 mW, and we realize the slow light with a fiber length of 0.1 m when the pump power is zero.
    • 基金项目: 辽宁大学国家级项目预申报基金(批准号: 2009LDGY06),辽宁大学博士启动基金和 国家自然科学基金(批准号: 10874062)资助的课题.
    • Funds: Project supported by the National Foundation in Advance of Liaoning University (Grant No. 2009LDGY06), the Liaoning University Doctor Startup Fund, and the National Natural Science Funds(Grant No. 10874062).
    [1]

    Su H, Kondratko P, Chuang S L 2006 Opt. Express 14 4800

    [2]

    Zhang G, Bo F, Dong R, Xu J 2004 Phys. Rev. Lett. 93 133903

    [3]

    Podivilov E, Sturman B, Shumelyuk A, Odoulov S 2003 Phys. Rev. Lett. 91 083902

    [4]

    Spielmann C, Szipöcs R, Stingl A, Krausz F 1994 Phys. Rev. Lett. 73 2308

    [5]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [6]

    Song K Y, Herráez M G, Thévenaz L 2005 Opt. Lett. 30 1782

    [7]

    Song K Y, Herráez M G, Thévenaz 2005 L. Opt. Express 13 82

    [8]

    Okawachi Y, Bigelow M S, Sharping J E, Zhu Z M, Schweinsberg A, Gauthier D J, Boyd R W, Gaeta A L 2005 Phys. Rev. Lett. 94 153902

    [9]

    Sharping J E, Okawachi Y, Gaeta A L 2005 Opt.Express 13 6092

    [10]

    Janner D, Galzerano G, Della Valle G 2005 Physical Review E 72 1

    [11]

    Schweinsberg A, Lepeshkin N N, Bigelow M S 2006 Europhys. Lett. 73 218

    [12]

    Qiu W, Zhang Y D, Ye J B, Tian H 2008 Acta Phys. Sin. 57 2242 (in Chinese) [邱巍, 掌蕴东, 叶建波, 田赫 2008 物理学报 57 2242]

    [13]

    Qiu W, Zhang Y D, Ye J B, Tian H 2007 Acta Phys. Sin. 56 7009 (in Chinese) [邱巍, 掌蕴东, 叶建波, 田赫 2007 物理学报 56 7009]

    [14]

    Christodoulides D N, Joseph R I 1989 Phy. Rev. Lett. 62 1746

    [15]

    Novak S, Gieske R 2002 J. Lightwave Technol. 20 975

  • [1]

    Su H, Kondratko P, Chuang S L 2006 Opt. Express 14 4800

    [2]

    Zhang G, Bo F, Dong R, Xu J 2004 Phys. Rev. Lett. 93 133903

    [3]

    Podivilov E, Sturman B, Shumelyuk A, Odoulov S 2003 Phys. Rev. Lett. 91 083902

    [4]

    Spielmann C, Szipöcs R, Stingl A, Krausz F 1994 Phys. Rev. Lett. 73 2308

    [5]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [6]

    Song K Y, Herráez M G, Thévenaz L 2005 Opt. Lett. 30 1782

    [7]

    Song K Y, Herráez M G, Thévenaz 2005 L. Opt. Express 13 82

    [8]

    Okawachi Y, Bigelow M S, Sharping J E, Zhu Z M, Schweinsberg A, Gauthier D J, Boyd R W, Gaeta A L 2005 Phys. Rev. Lett. 94 153902

    [9]

    Sharping J E, Okawachi Y, Gaeta A L 2005 Opt.Express 13 6092

    [10]

    Janner D, Galzerano G, Della Valle G 2005 Physical Review E 72 1

    [11]

    Schweinsberg A, Lepeshkin N N, Bigelow M S 2006 Europhys. Lett. 73 218

    [12]

    Qiu W, Zhang Y D, Ye J B, Tian H 2008 Acta Phys. Sin. 57 2242 (in Chinese) [邱巍, 掌蕴东, 叶建波, 田赫 2008 物理学报 57 2242]

    [13]

    Qiu W, Zhang Y D, Ye J B, Tian H 2007 Acta Phys. Sin. 56 7009 (in Chinese) [邱巍, 掌蕴东, 叶建波, 田赫 2007 物理学报 56 7009]

    [14]

    Christodoulides D N, Joseph R I 1989 Phy. Rev. Lett. 62 1746

    [15]

    Novak S, Gieske R 2002 J. Lightwave Technol. 20 975

计量
  • 文章访问数:  3510
  • PDF下载量:  635
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-04
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

室温掺铒光纤放大器中实现参量控制无损耗光速减慢传输

  • 1. 辽宁大学物理学院, 沈阳 110036
    基金项目: 

    辽宁大学国家级项目预申报基金(批准号: 2009LDGY06),辽宁大学博士启动基金和 国家自然科学基金(批准号: 10874062)资助的课题.

摘要: 本文对掺铒光纤放大器中的光速减慢传输系统进行深入研究,提出一种直接利用掺铒光纤放大器中抽运光 强度和掺铒光纤长度,通过优化控制参量来降低信号光强度损耗系数,从而可以实现无强度损耗光速减慢传输, 研究结果表明:当抽运光功率为3.5 mW时,信号光强度损耗系数近似为零;当抽运光关闭时,掺铒光纤长度为 0.1 m时,信号光强度损耗系数近似为零.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回