搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

里德伯原子辅助光力系统的完美光力诱导透明及慢光效应

王鑫 任飞帆 韩嵩 韩海燕 严冬

引用本文:
Citation:

里德伯原子辅助光力系统的完美光力诱导透明及慢光效应

王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬

Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted optomechanical system

Wang Xin, Ren Fei-Fan, Han Song, Han Hai-Yan, Yan Dong
PDF
HTML
导出引用
  • 光力诱导透明是典型的量子相消干涉效应, 在量子光学和量子信息处理当中具有广泛的应用. 本文在里德伯原子系综镶嵌的复合光力学系统中考察了光力诱导透明现象以及由此产生的慢光效应. 当考虑非旋转波近似的情况下, 可以获得完美的光力诱导透明, 即非常狭窄的理想透明窗口. 在可分辨边带条件下, 微腔品质越高, 完美透明窗口中的慢光效应越明显. 特别地, 与其他原子相比, 在实现超慢光方面里德伯原子的长寿命体现了其优越性.
    Rydberg atoms have attracted considerable attention due to their several singular properties, such as strong long-range interactions, extremely long lifetimes, and very large polarizability. These characteristics make Rydberg atoms a good candidates for cavity quantum electrodynamics, quantum information, and many-body physics. Recently, the study of optomechanics has become a rapidly developing field due to its important applications in cooling of mechanical resonators, implementing precision measurements, slowing light, and preparing quantum entanglement. Obviously, optomechanical systems pave the way for quantum information processing and quantum communication. Specially, there is significant interest in quantum optomechanics due to its high compatibility that can be combined, to build hybrid systems for certain purposes, with the ultracold atoms, a superconducting single electron transistor, a magnetostrictive actuation, a charged oscillator resonator, etc. In this work, we investigate the optomechanically induced transparency (OMIT) and the resulting effect of slow light in a hybrid system composed of a Rydberg atomic ensemble embedded inside a simple optomechanical cavity. As a typical effect of destructive quantum interference, OMIT is widely used in quantum optics and quantum information processing. Based on the Rydberg blockade effect, a Rydberg atomic ensemble in the same blockade region embedded inside an optomechanical cavity can be regarded as a superatom that contains only a single Rydberg excitation. Therefore, the problem of exponentially increasing system size with the number of atoms increasing can be circumvented easily. The hybrid system becomes a coupling between a Rydberg superatom and an optomechanical cavity and the coupling strength is enhanced by a factor of square root of the number of atoms in the ensemble. In this system, the perfect OMIT, namely, an ideal OMIT dip with a very narrow window, can be attained when an effect of non-rotating wave approximation (NRWA) is considered. Further, we demonstrate that the term of NRWA plays a key important role in achieving perfect OMIT by comparing the optomechanical spectra obtained with and without NRWA effects. Our results show that in the resolved sideband regime the higher the quality factor of cavity is, the stronger the slow light effect becomes in the window of the perfect OMIT. Particularly, in achieving the ultraslow light, the long lifetime of the Rydberg atom shows its superiority.
      通信作者: 严冬, ydbest@126.com
    • 基金项目: 国家自然科学基金(批准号: 11874004, 11204019)、吉林省科技厅自然科学基金(批准号: 20210101411JC)和长春大学基金资助的课题
      Corresponding author: Yan Dong, ydbest@126.com
    • Funds: Project supported by the by National Natural Science Foundation of China (Grant Nos. 11874004, 11204019), the Nature Science Foundation of Science and Technology Department of Jilin Province, China (Grant No. 20210101411JC), and the Science Foundation of Changchun University, China.
    [1]

    Kippenberg T J, Vahala K J 2008 Science 321 1172Google Scholar

    [2]

    Aspelmeyer M, Gröblacher S, Hammerer K 2010 J. Opt. Soc. Am. B 27 A189Google Scholar

    [3]

    Aspelmeyer M, Meystre P, Schwab K 2012 Phys. Today 65 29

    [4]

    Xiong H, Si L G, Zheng A S 2012 Phys. Rev. A 86 013815Google Scholar

    [5]

    Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J, Nori F 2015 Phys. Rev. Lett. 114 253601Google Scholar

    [6]

    Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J, Nori F 2015 Phys. Rev. Lett. 114 093602Google Scholar

    [7]

    Grudinin I S, Lee H, Painter O, Vahala K J 2010 Phys. Rev. Lett. 104 083901Google Scholar

    [8]

    Mahboob I, Nishiguchi K, Fujiwara A, Yamaguchi H 2013 Phys. Rev. Lett. 110 127202Google Scholar

    [9]

    Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604Google Scholar

    [10]

    Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476Google Scholar

    [11]

    LaHaye M D, Camarota O B B, Schwab K C 2004 Science 304 74Google Scholar

    [12]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682Google Scholar

    [13]

    Caves C M 1980 Phys. Rev. Lett. 45 75Google Scholar

    [14]

    Gavartin E, Verlot P, Kippenberg T J 2012 Nat. Nanotechnol. 7 509Google Scholar

    [15]

    Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [16]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [17]

    Mancini S, Giovannetti V, Vitali D, Tombesi P 2002 Phys. Rev. Lett. 88 120401Google Scholar

    [18]

    Harris S E 1997 Phys. Today 50 36

    [19]

    Fleichhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [20]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803Google Scholar

    [21]

    Weis S, Rivière R, Deléglise S 2010 Science 330 1520Google Scholar

    [22]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [23]

    Akram M J, Khan M M, Saif F 2015 Phys. Rev. A 92 023846Google Scholar

    [24]

    Yan X B 2020 Phys. Rev. A 101 043820Google Scholar

    [25]

    Ian H, Gong Z R, Liu Y 2008 Phys. Rev. A 78 013824Google Scholar

    [26]

    Genes C, Vitali D, Tombesi P 2008 Phys. Rev. A 77 050307Google Scholar

    [27]

    Akram M J, Ghafoor F, Saif F 2015 J. Phys. B At. Mol. Opt. Phys. 48 065502Google Scholar

    [28]

    Paternostro M, De Chiara G, Palma G M 2010 Phys. Rev. Lett. 104 243602Google Scholar

    [29]

    Jia W Z, Wang Z D 2013 Phys. Rev. A 88 063821Google Scholar

    [30]

    Lecocq F, Teufel J D, Aumentado J 2015 Nat. Phys. 11 635Google Scholar

    [31]

    Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015 Phys. Rev. A 91 023813Google Scholar

    [32]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

    [33]

    Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [34]

    Heidemann R, Raitzsch U, Bendkowsky V, Butscher B, Low R, Santos L, Pfau T 2007 Phys. Rev. Lett. 99 163601Google Scholar

    [35]

    Saffman M, Walker T, Molmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [36]

    Weimer H, Muller M, Lesanovsky I, Zoller P, Buchler H P 2010 Nat. Phys. 6 382Google Scholar

    [37]

    Saffman M, Walker T G 2002 Phys. Rev. A 66 065403Google Scholar

    [38]

    Fu C B, Yan X B, Gu K H 2013 Phys. Rev. A 87 053841Google Scholar

    [39]

    Yan D, Bai W J, Bai J N, Chen L, Han H Y, Wu J H 2022 Photonics 9 242Google Scholar

    [40]

    Marek T, Grigori E A, Boris A M, Dmitry S P 2020 Phys. Rev. A 101 051601Google Scholar

    [41]

    Khodas M, Pustilnik M, Kamenev A, Glazman L I 2007 Phys. Rev. Lett. 99 110405Google Scholar

    [42]

    Karla L, Jean-Sébastien B, Roberta C, Edmond O, Corinna K 2018 Phys. Rev. A 98 033605Google Scholar

    [43]

    Yan X B 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035401Google Scholar

    [44]

    Walls D F, Milburn G J 1944 Quantum Optics (Berlin: Springer-Verlag) pp127−141

  • 图 1  (a)典型的光力学微腔内部捕获里德伯原子系综, 并且这些原子都在同一个偶极阻塞区域. 右侧为二能级里德伯原子的能级结构, 两个里德伯原子间通过范德瓦耳斯势作用在一起. (b)同一阻塞区域的原子系综可以看作共享最多一个里德伯激发的超级原子, 因而系统可以退化为里德伯超级原子与光力学微腔的强关联系统. 右侧为二能级里德伯超级原子的能级结构图

    Fig. 1.  (a) Schematic diagram of a typical hybrid optomechanical system containing a Rydberg ensemble where all atoms are in the same blockade region. Right: Energy level diagram of a two-level Rydberg atom. Two Rydberg atoms couple strongly via van der Waals (vdW) potential. (b) The hybrid optomechanical system can be regarded as a typical optomechanical system coupled a Rydberg superatom sharing at most one Rydberg excitation. Right: Energy level diagram of a two-level Rydberg superatom.

    图 2  (a)${\rm Re} \left[ {{\varepsilon _{\text{T}}}} \right]$${\rm Re} \left[ {\varepsilon _{\text{T}}'} \right]$ , (b)${\rm Im} \left[ {{\varepsilon _{\text{T}}}} \right]$$ {\rm Im} \left[ {\varepsilon _{\text{T}}'} \right] $作为$ x/{\gamma _{\text{m}}} $的函数. 其中光力学参数为$ {\omega _{\text{m}}}/(2{\text{π )}} = 134{\text{ kHz}} $, $ \kappa = {\omega _{\text{m}}} $, $ Q = {10^4} $; 原子参数为$ n = {10^2} $, $ {\gamma _{\text{r}}}{\text{/(2\pi )}} = 0.02{\text{ MHz}} $, 并保证完美光力透明条件$ \beta = {\beta _0} $; 黑色实线代表$ {\varepsilon _{\text{T}}} $, 而红色短划线代表$ \varepsilon _{\text{T}}' $

    Fig. 2.  (a)$ {\rm Re} \left[ {{\varepsilon _{\text{T}}}} \right] $ and $ {\rm Re} \left[ {\varepsilon _{\text{T}}'} \right] $, (b)$ {\rm Im} \left[ {\varepsilon _{\text{T}}^{}} \right] $ and $ {\rm Im} \left[ {\varepsilon _{\text{T}}'} \right] $ as a function of $ x/{\gamma _{\text{m}}} $ with optomechanical parameters ${\omega _{\text{m}}}{\text{/(2\pi )}} = $$ 134{\text{ kHz}}$, $ \kappa = {\omega _{\text{m}}} $, $ Q = {10^4} $; atomic parameters $ n = {10^2} $, ${\gamma _{\text{r}}}{\text{/(2\pi )}} = 0.02{\text{ MHz}}$, and the condition of perfect OMIT $ \beta = {\beta _0} $. Here, the black solid curve represents $ {\varepsilon _{\text{T}}} $ while the red dashed curve represents $ \varepsilon _{\text{T}}' $.

    图 3  (a)$ {\rm Re} \left[ {{\varepsilon _{\text{T}}}} \right] $$ {\rm Re} \left[ {\varepsilon _{\text{T}}'} \right] $作为$ x/{\gamma _{\text{m}}} $的函数, 黑色、蓝色、红色曲线分别为$ \kappa /{\omega _{\text{m}}} = 0.5 $, $ \kappa /{\omega _{\text{m}}} = 1.0 $以及$ \kappa /{\omega _{\text{m}}} = 1.5 $, 实线(短划线)代表$ {\varepsilon _{\text{T}}} $($ \varepsilon _{\text{T}}' $); (b) ${\rm Re} {\left[ {\varepsilon _{\text{T}}'} \right]_{\text{m}}}$$ {x_0}/{\gamma _m} $$ \kappa /{\omega _m} $的关系函数, 因为完美OMIT窗口有$ {\rm Re} \left[ {{\varepsilon _{\text{T}}}} \right] = 0 $, 所以${\rm Re} {\left[ {\varepsilon _{\text{T}}'} \right]_{\text{m}}} = $$ \min \left\{ {{\rm Re} \left[ {\varepsilon _{\text{T}}'} \right]} \right\}$直接表示包含 $ N $与不包含 $ N $两种情况下窗口内吸收的差值, 其他参数同图2

    Fig. 3.  (a)$ {\rm Re} \left[ {{\varepsilon _{\text{T}}}} \right] $ and $ {\rm Re} \left[ {\varepsilon _{\text{T}}'} \right] $ as a function of $ x/{\gamma _{\text{m}}} $ with $ \kappa /{\omega _{\text{m}}} = 0.5 $ (black curve), $ \kappa /{\omega _{\text{m}}} = 1.0 $ (blue curve) and $ \kappa /{\omega _{\text{m}}} = 1.5 $ (red curve). The solid (dashed) curve represents $ {\varepsilon _{\text{T}}} $($ \varepsilon _{\text{T}}' $). (b)${\rm Re} {\left[ {\varepsilon _{\text{T}}'} \right]_{\text{m}}}$ and $ x/{\gamma _{\text{m}}} $ as a function of $ \kappa /{\omega _m} $. Here, ${\rm Re} {\left[ {\varepsilon _{\text{T}}'} \right]_{\text{m}}} = $$ \min \left\{ {{\rm Re} \left[ {\varepsilon _{\text{T}}{'}} \right]} \right\}$ represents the difference of absorptions in the window with and without $ N $ due to $ {\rm Re} \left[ {{\varepsilon _{\text{T}}}} \right] $ = 0. Other parameters are the same as those in Fig. 2.

    图 4  (a1)和(a2)${\rm Re} {\left[ {\varepsilon _{\text{T}}'} \right]_{\text{m}}}$(黑色短划线)和$ {x_0}/{\gamma _{\text{m}}} $(红色实线)作为lgn的函数, (a1)和(a2)分别对应$ \kappa /{\omega _{\text{m}}} = 0.1 $$ \kappa /{\omega _{\text{m}}} = 2.0 $; (b1)和(b2)${\rm Re} {\left[ {\varepsilon _{\text{T}}'} \right]_{\text{m}}}$(黑色短划线)和$ {x_0}/{\gamma _{\text{m}}} $(红色实线)作为$ {\gamma _{\text{r}}} $的函数, (b1)和(b2)分别对应$ \kappa /{\omega _{\text{m}}} = 0.1 $$ \kappa /{\omega _{\text{m}}} = 2.0 $, 其他参数同图2

    Fig. 4.  (a1) and (a2)${\rm Re} {\left[ {\varepsilon _{\text{T}}'} \right]_{\text{m}}}$(black dashed curve) and $ {x_0}/{\gamma _{\text{m}}} $(red solid curve) as a function of lgn, (a1) and (a2) correspond to $ \kappa /{\omega _{\text{m}}} = 0.1 $and $ \kappa /{\omega _{\text{m}}} = 2.0 $, respectively; (b1) and (b2)${\rm Re} {\left[ {\varepsilon _{\text{T}}'} \right]_{\text{m}}}$(black dashed curve) and $ {x_0}/{\gamma _{\text{m}}} $(red solid curve) as a function of $ {\gamma _{\text{r}}} $. (b1) and (b2) correspond to $ \kappa /{\omega _{\text{m}}} = 0.1 $ and $ \kappa /{\omega _{\text{m}}} = 2.0 $, respectively. Other parameters are the same as those in Fig. 2.

    图 5  ${\rm Re} \left[ {{\varepsilon _{\text{T}}}} \right]$(黑色实线)、${\rm Im} \left[ {\varepsilon _{\text{T}}^{}} \right]$(蓝色短划线)以及$ \tau $(红色点线)作为$ x/{\gamma _{\text{m}}} $的函数, 绿色竖线给出完美光力诱导透明坐标$ {x_0} $, 参数同图2

    Fig. 5.  ${\rm Re} \left[ {{\varepsilon _{\text{T}}}} \right]$ (black solid curve), ${\rm Im} \left[ {\varepsilon _{\text{T}}^{}} \right]$ (blue dashed curve), and $ \tau $(red dotted curve) as a function of $ x/{\gamma _{\text{m}}} $. The green vertical line denotes $ {x_0} $ of perfect OMIT, all parameters are the same as those in Fig. 2.

    图 6  (a)$ {\tau _{\max }} $作为$ \kappa /{\omega _{\text{m}}} $和lgQ的函数, 其中$ n = {10^4} $; (b)$ {\tau _{\max }} $作为$ {\gamma _{\text{r}}} $/(2π)和lgn的函数, 其中$ \kappa /{\omega _{\text{m}}} = 0.1 $. 其他参数同图2

    Fig. 6.  (a) $ {\tau _{\max }} $ as a function of $ \kappa /{\omega _{\text{m}}} $ and lgQ, where $ n = $$ {10^4} $; (b)$ {\tau _{\max }} $ as a function of $ {\gamma _{\text{r}}} $/(2π) and lgn, while $ \kappa /{\omega _{\text{m}}} = $$ 0.1 $. Other parameters are the same as those in Fig. 2.

  • [1]

    Kippenberg T J, Vahala K J 2008 Science 321 1172Google Scholar

    [2]

    Aspelmeyer M, Gröblacher S, Hammerer K 2010 J. Opt. Soc. Am. B 27 A189Google Scholar

    [3]

    Aspelmeyer M, Meystre P, Schwab K 2012 Phys. Today 65 29

    [4]

    Xiong H, Si L G, Zheng A S 2012 Phys. Rev. A 86 013815Google Scholar

    [5]

    Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J, Nori F 2015 Phys. Rev. Lett. 114 253601Google Scholar

    [6]

    Lü X Y, Wu Y, Johansson J R, Jing H, Zhang J, Nori F 2015 Phys. Rev. Lett. 114 093602Google Scholar

    [7]

    Grudinin I S, Lee H, Painter O, Vahala K J 2010 Phys. Rev. Lett. 104 083901Google Scholar

    [8]

    Mahboob I, Nishiguchi K, Fujiwara A, Yamaguchi H 2013 Phys. Rev. Lett. 110 127202Google Scholar

    [9]

    Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604Google Scholar

    [10]

    Brooks D W C, Botter T, Schreppler S, Purdy T P, Brahms N, Stamper-Kurn D M 2012 Nature 488 476Google Scholar

    [11]

    LaHaye M D, Camarota O B B, Schwab K C 2004 Science 304 74Google Scholar

    [12]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682Google Scholar

    [13]

    Caves C M 1980 Phys. Rev. Lett. 45 75Google Scholar

    [14]

    Gavartin E, Verlot P, Kippenberg T J 2012 Nat. Nanotechnol. 7 509Google Scholar

    [15]

    Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Groblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89Google Scholar

    [16]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [17]

    Mancini S, Giovannetti V, Vitali D, Tombesi P 2002 Phys. Rev. Lett. 88 120401Google Scholar

    [18]

    Harris S E 1997 Phys. Today 50 36

    [19]

    Fleichhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [20]

    Agarwal G S, Huang S 2010 Phys. Rev. A 81 041803Google Scholar

    [21]

    Weis S, Rivière R, Deléglise S 2010 Science 330 1520Google Scholar

    [22]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [23]

    Akram M J, Khan M M, Saif F 2015 Phys. Rev. A 92 023846Google Scholar

    [24]

    Yan X B 2020 Phys. Rev. A 101 043820Google Scholar

    [25]

    Ian H, Gong Z R, Liu Y 2008 Phys. Rev. A 78 013824Google Scholar

    [26]

    Genes C, Vitali D, Tombesi P 2008 Phys. Rev. A 77 050307Google Scholar

    [27]

    Akram M J, Ghafoor F, Saif F 2015 J. Phys. B At. Mol. Opt. Phys. 48 065502Google Scholar

    [28]

    Paternostro M, De Chiara G, Palma G M 2010 Phys. Rev. Lett. 104 243602Google Scholar

    [29]

    Jia W Z, Wang Z D 2013 Phys. Rev. A 88 063821Google Scholar

    [30]

    Lecocq F, Teufel J D, Aumentado J 2015 Nat. Phys. 11 635Google Scholar

    [31]

    Yan D, Wang Z H, Ren C N, Gao H, Li Y, Wu J H 2015 Phys. Rev. A 91 023813Google Scholar

    [32]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)

    [33]

    Lukin M D, Fleischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901Google Scholar

    [34]

    Heidemann R, Raitzsch U, Bendkowsky V, Butscher B, Low R, Santos L, Pfau T 2007 Phys. Rev. Lett. 99 163601Google Scholar

    [35]

    Saffman M, Walker T, Molmer K 2010 Rev. Mod. Phys. 82 2313Google Scholar

    [36]

    Weimer H, Muller M, Lesanovsky I, Zoller P, Buchler H P 2010 Nat. Phys. 6 382Google Scholar

    [37]

    Saffman M, Walker T G 2002 Phys. Rev. A 66 065403Google Scholar

    [38]

    Fu C B, Yan X B, Gu K H 2013 Phys. Rev. A 87 053841Google Scholar

    [39]

    Yan D, Bai W J, Bai J N, Chen L, Han H Y, Wu J H 2022 Photonics 9 242Google Scholar

    [40]

    Marek T, Grigori E A, Boris A M, Dmitry S P 2020 Phys. Rev. A 101 051601Google Scholar

    [41]

    Khodas M, Pustilnik M, Kamenev A, Glazman L I 2007 Phys. Rev. Lett. 99 110405Google Scholar

    [42]

    Karla L, Jean-Sébastien B, Roberta C, Edmond O, Corinna K 2018 Phys. Rev. A 98 033605Google Scholar

    [43]

    Yan X B 2021 J. Phys. B: At. Mol. Opt. Phys. 54 035401Google Scholar

    [44]

    Walls D F, Milburn G J 1944 Quantum Optics (Berlin: Springer-Verlag) pp127−141

  • [1] 蔡婷, 何军, 刘智慧, 刘瑶, 苏楠, 史鹏飞, 靳刚, 成永杰, 王军民. 基于纳秒光脉冲激发的里德伯原子光谱. 物理学报, 2025, 74(1): 013201. doi: 10.7498/aps.74.20240900
    [2] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [3] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应. 物理学报, 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [4] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [5] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究. 物理学报, 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [6] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [7] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [8] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [9] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [10] 谷开慧, 严冬, 张孟龙, 殷景志, 付长宝. 原子辅助光力系统中快慢光的量子调控. 物理学报, 2019, 68(5): 054201. doi: 10.7498/aps.68.20181424
    [11] 严晓波, 杨柳, 田雪冬, 刘一谋, 张岩. 参量放大器腔中光力诱导透明与本征模劈裂性质. 物理学报, 2014, 63(20): 204201. doi: 10.7498/aps.63.204201
    [12] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [13] 邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰. 掺铒光纤中亚稳态粒子振荡和慢光时间延迟关系研究. 物理学报, 2013, 62(21): 214205. doi: 10.7498/aps.62.214205
    [14] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [15] 张敬, 掌蕴东, 张学楠, 喻波, 王金芳, 王楠, 田赫, 袁萍. 光学谐振系统中慢光特性研究. 物理学报, 2011, 60(2): 024218. doi: 10.7498/aps.60.024218
    [16] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [17] 张旨遥, 周晓军, 石胜辉, 梁锐. 矩形谱宽带光抽运的布里渊慢光中脉冲失真的分析. 物理学报, 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [18] 王士鹤, 任立勇, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究. 物理学报, 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [19] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究. 物理学报, 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [20] 邱 巍, 掌蕴东, 叶建波, 田 赫, 王 楠, 王金芳, 袁 萍. 室温条件下掺铒光纤中光脉冲群速可控特性的研究. 物理学报, 2007, 56(12): 7009-7014. doi: 10.7498/aps.56.7009
计量
  • 文章访问数:  4610
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-26
  • 修回日期:  2023-02-11
  • 上网日期:  2023-03-14
  • 刊出日期:  2023-05-05

/

返回文章
返回