搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光参量啁啾脉冲放大数值模拟平台中超短脉冲聚焦模拟算法

陈经纬 罗斌 曾小明 母杰 王逍

引用本文:
Citation:

光参量啁啾脉冲放大数值模拟平台中超短脉冲聚焦模拟算法

陈经纬, 罗斌, 曾小明, 母杰, 王逍

Ultra-short pulse focusing algorithm for optical parametric chirp pulse amplification numerical simulation platform

Chen Jing-Wei, Luo Bin, Zeng Xiao-Ming, Mu Jie, Wang Xiao
PDF
HTML
导出引用
  • 光参量啁啾脉冲放大(OPCPA)数值模拟平台研发涉及到光脉冲的展宽压缩、参量放大和聚焦输出等物理模型, 针对其中的超短脉冲聚焦算法, 本文推导给出了输出光场范围可调、并具备快速傅里叶算法的数学表达式, 解决了传统菲涅尔远场衍射聚焦算法面临如何提高光场分辨率和保持各波长分量计算网格大小一致的难题, 为后续直接进行时频逆变换、高效分析超短脉冲聚焦后的时空耦合特性提供了便利. 数值仿真结果揭示出, 超短脉冲聚焦场暗环区域表现出强烈的时空耦合特征. 本算法已成功应用于OPCPA数值仿真平台研发中, 可望在超短激光脉冲装置的优化设计工作中发挥重要作用.
    The development of optical parametric chirp pulse amplification (OPCPA) numerical simulation platform involves physical models such as broadening and compression of optical pulse, parametric amplification and focusing output. In the simulation platform, the Fresnel far-field diffraction equation is usually used to simulate the characteristics of ultrashort pulse focusing. Firstly, we need to calculate the optical field distribution of different wavelength components in the ultrashort pulse, and then use the inverse Fourier transform to obtain the temporal and spatial distribution characteristics of the pulse. However, for different wavelength components, the sizes of focused field grids obtained by the far-field algorithm are not equal, and subsequent resampling is required, which will increase the amount of calculation. In addition, due to the limitation of the calculation range of the light field in the pulse broadening and compression, there is also a problem of poor resolution of the focused field. In this work, the mathematical expression that can adjust the range of the output light field and use the fast fourier algorithm is derived. The main mechanism of this algorithm is as follows. Based on the Fresnel far-field diffraction equation, the output field is sampled independently in the discrete calculation process to meet the requirements for adjustable range of the output field. After identity transformation, the output field results can be calculated by the fast Fourier algorithm. Furthermore, the sampling conditions that need to be satisfied when using the algorithm are further analyzed and discussed. It solves the problem of how to improve the resolution of light field and keep the computational grid size of each wavelength component consistent when the traditional Fresnel far field diffraction is used to simulate the focusing process, which provides the convenience for the subsequent direct time-frequency inverse transformation. The numerical simulation results reveal that the dark ring region of the ultrashort pulse focusing field shows strong spatiotemporal coupling characteristics. This algorithm has been successfully applied to the development of OPCPA numerical simulation platform, and is expected to play an important role in optimizing the design of ultrashort laser pulse device.
      通信作者: 罗斌, bluo@swjtu.edu.cn
    • 基金项目: 等离子体物理重点实验室(批准号: 22-ZDJJ-06-03)资助的课题.
      Corresponding author: Luo Bin, bluo@swjtu.edu.cn
    • Funds: Project supported by the Science and Technology on Plasma Physics Laboratory (Grant No. 22-ZDJJ-06-03).
    [1]

    Wang D H, Shou Y R, Wang P J, Liu J B, Mei Z S, Cao Z X, Zhang J M, Yang P L, Feng G B, Chen S Y, Zhao Y Y, Joerg S, Ma W J 2020 High Power Laser Sci. 8 04000e41Google Scholar

    [2]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. 3 010000e3Google Scholar

    [3]

    Wang X B, Guang Y H, Zhang Z M, Gu Y Q, Zhao B, Zuo Y, Zheng J 2020 High Power Laser Sci. 8 04000e34Google Scholar

    [4]

    Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H, Jing F 2017 Opt. Lett. 42 2014Google Scholar

    [5]

    Xiao Q, Pan X, Jiang Y E, Wang J F, Du L F, Guo J T, Huang D J, Lu X H, Cui Z J, Yang S S, Wei H, Wang X C, Xiao Z L, Li G Y, Wang X Q, Ouyang X P, Fan W, Li X C, Zhu J Q 2021 Opt. Express 29 15980Google Scholar

    [6]

    Begishev I A, Bagnoud V, Bahk S W, Bittle W A, Brent G, Cuffney R, Dorrer C, Froula D H, Haberberger D, Mileham C, Nilson P M, Okishev A V, Shaw J L, Shoup M J, Stillman C R, Stoeckl C, Turnbull D, Wager B, Zuegel J D, Bromage J 2021 Appl. Opt. 60 11104Google Scholar

    [7]

    胡必龙, 王逍, 李伟, 曾小明, 母杰, 左言磊, 王晓东, 吴朝辉, 粟敬钦 2020 光学学报 40 222Google Scholar

    Hu B L, Wang X, Li W, Zeng X M, MU J, Zuo Y L, Wang X D, Wu C H, Su J Q 2020 Acta Opt. Sin. 40 222Google Scholar

    [8]

    麦克斯 波恩, 埃米尔 沃尔夫著 (杨葭荪译) 2009 光学原理(第七版) (北京: 电子工业出版社) 第353—357页

    Born M, Wolf E (translated by Yang J S) 2009 Principles of optics (7th Ed.) (Beijing: Electronic Industry Press) pp353–357 (in Chinese)

    [9]

    古德曼 J W (秦克诚, 刘培森, 陈家璧, 曹其智 译) 2016 傅里叶光学导论 (第三版) (北京: 电子工业出版社) 第46—49页

    Goodman J W (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2016 Introduction to Fourier Optics (3rd Ed.) (Beijing: Electronic Industry Press) pp46–49 (in Chinese)

    [10]

    Talanov V I 1970 JETP Lett. 11 199

    [11]

    Feigenbaum E, Sacks R A, McCandless K P, MacGowan B J 2013 Appl. Opt. 52 5030Google Scholar

    [12]

    Kozacki T, Falaggis K, Kujawinska M 2012 Appl. Opt. 51 7080Google Scholar

    [13]

    杨美霞, 钟鸣, 任钢, 何衡湘, 刘文兵, 夏惠军, 薛亮平 2011 光学学报 31 72Google Scholar

    Yang M X, Zhong M, Ren G, He H X, Liu W B, Xia H J, Xue L P 2011 Acta Optic Sinica 31 72Google Scholar

    [14]

    Hu Y L, Wang Z Y, Wang X W, Ji S Y, Zhang C C, Li J W, Zhu W L, Wu D, Chu J R 2020 Light Sci. Appl. 9 119Google Scholar

    [15]

    Voelz D G 2010 Computational Fourier Optics (Bellingham: Washington SPIE Press) pp199−201

  • 图 1  超短脉冲光谱分布

    Fig. 1.  Spectral distribution of ultrashort pulses.

    图 2  传统衍射算法聚焦光场分布 (a), (b)和(c)分别是波长λ = 0.74, 0.80和0.86 μm时的归一化二维强度分布; (d), (e)和(f)分别是波长λ = 0.74, 0.80 μm和0.86 μm时${x'}$轴上归一化一维强度分布

    Fig. 2.  Focusing light field distribution of traditional diffraction algorithm: (a), (b) and (c) The normalized two-dimensional intensity distribution at λ = 0.74, 0.80, and 0.86 μm, respectively; (d), (e) and (f) the normalized one-dimensional intensity distributions on the ${x'}$ axis at λ = 0.74, 0.80, and 0.86 μm, respectively.

    图 3  本文算法聚焦光场分布 (a), (b)和(c)分别是波长λ = 0.74, 0.80和0.86 μm时的归一化二维强度分布; (d), (e)和(f)分别是波长λ = 0.74, 0.80和0.86 μm时${x'}$轴上归一化一维强度分布

    Fig. 3.  Focusing light field distribution of the proposed algorithm: (a), (b) and (c) The normalized two-dimensional intensity distribution at λ = 0.74, 0.80, and 0.86 μm, respectively; (d), (e) and (f) are the normalized one-dimensional intensity distributions on the ${x'}$ axis at λ = 0.74, 0.80, and 0.86 μm, respectively.

    图 4  聚焦场的时空分布图 (a) 整体脉冲光的二维空间分布; (b)整体脉冲光和中心波长分量在${x'}$轴上的一维分布对比(内插图为红色矩形方框范围内的放大图); (c) ${y'} = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{μm}}$处的时空分布; (d) ${y'} = 8.0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{μm}}$处的时空分布

    Fig. 4.  Spatial-temporal distribution of the focused field: (a) The two-dimensional spatial distribution of the whole pulsed light; (b) one-dimensional distribution comparison of the whole pulse light and the central wavelength component on the ${x'}$ axis (the interpolation image is an enlarged image within the red rectangular box); (c) spatio-temporal distribution at${y'} = 0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{μm}}$; (d) spatio-temporal distribution at ${y'} = 8.0{\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\kern 1 pt} {\text{μm}}$.

    图 5  聚焦场${x'}$轴上暗环附近时间波形演变图 (a)—(i)分别对应${x'}$轴上位置从7.6 μm以步长0.1 μm变化到8.4 μm

    Fig. 5.  Evolution of pulse shapes near the dark ring on ${x'}$ axis of focal field: (a)–(i) Corresponding to the axis position from 7.6 μm to 8.4 μm with a step of 0.1 μm.

    表 1  超短脉冲聚焦模拟计算参数

    Table 1.  Calculation parameters of ultrashort pulse focusing.

    计算参数名称和符号/单位参数数值
    时域脉宽 ${\tau _{{\text{FWHM}}}}$/fs20
    中心波长 ${\lambda _0}$/μm0.8
    脉冲时间采样间隔 $\Delta t$/ fs0.3
    时域采样点数 ${N_{\text{t}}}$512
    超高斯阶数 $n$12
    输入光束半径 $R$/mm50
    输入光场采样点数 $N \times N$$2048 \times 2048$
    输入光场采样间隔 $\text{δ} x$($\text{δ} y$)/mm0.1
    透镜后的传输距离 $z$/mm800
    下载: 导出CSV
  • [1]

    Wang D H, Shou Y R, Wang P J, Liu J B, Mei Z S, Cao Z X, Zhang J M, Yang P L, Feng G B, Chen S Y, Zhao Y Y, Joerg S, Ma W J 2020 High Power Laser Sci. 8 04000e41Google Scholar

    [2]

    Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. 3 010000e3Google Scholar

    [3]

    Wang X B, Guang Y H, Zhang Z M, Gu Y Q, Zhao B, Zuo Y, Zheng J 2020 High Power Laser Sci. 8 04000e34Google Scholar

    [4]

    Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H, Jing F 2017 Opt. Lett. 42 2014Google Scholar

    [5]

    Xiao Q, Pan X, Jiang Y E, Wang J F, Du L F, Guo J T, Huang D J, Lu X H, Cui Z J, Yang S S, Wei H, Wang X C, Xiao Z L, Li G Y, Wang X Q, Ouyang X P, Fan W, Li X C, Zhu J Q 2021 Opt. Express 29 15980Google Scholar

    [6]

    Begishev I A, Bagnoud V, Bahk S W, Bittle W A, Brent G, Cuffney R, Dorrer C, Froula D H, Haberberger D, Mileham C, Nilson P M, Okishev A V, Shaw J L, Shoup M J, Stillman C R, Stoeckl C, Turnbull D, Wager B, Zuegel J D, Bromage J 2021 Appl. Opt. 60 11104Google Scholar

    [7]

    胡必龙, 王逍, 李伟, 曾小明, 母杰, 左言磊, 王晓东, 吴朝辉, 粟敬钦 2020 光学学报 40 222Google Scholar

    Hu B L, Wang X, Li W, Zeng X M, MU J, Zuo Y L, Wang X D, Wu C H, Su J Q 2020 Acta Opt. Sin. 40 222Google Scholar

    [8]

    麦克斯 波恩, 埃米尔 沃尔夫著 (杨葭荪译) 2009 光学原理(第七版) (北京: 电子工业出版社) 第353—357页

    Born M, Wolf E (translated by Yang J S) 2009 Principles of optics (7th Ed.) (Beijing: Electronic Industry Press) pp353–357 (in Chinese)

    [9]

    古德曼 J W (秦克诚, 刘培森, 陈家璧, 曹其智 译) 2016 傅里叶光学导论 (第三版) (北京: 电子工业出版社) 第46—49页

    Goodman J W (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2016 Introduction to Fourier Optics (3rd Ed.) (Beijing: Electronic Industry Press) pp46–49 (in Chinese)

    [10]

    Talanov V I 1970 JETP Lett. 11 199

    [11]

    Feigenbaum E, Sacks R A, McCandless K P, MacGowan B J 2013 Appl. Opt. 52 5030Google Scholar

    [12]

    Kozacki T, Falaggis K, Kujawinska M 2012 Appl. Opt. 51 7080Google Scholar

    [13]

    杨美霞, 钟鸣, 任钢, 何衡湘, 刘文兵, 夏惠军, 薛亮平 2011 光学学报 31 72Google Scholar

    Yang M X, Zhong M, Ren G, He H X, Liu W B, Xia H J, Xue L P 2011 Acta Optic Sinica 31 72Google Scholar

    [14]

    Hu Y L, Wang Z Y, Wang X W, Ji S Y, Zhang C C, Li J W, Zhu W L, Wu D, Chu J R 2020 Light Sci. Appl. 9 119Google Scholar

    [15]

    Voelz D G 2010 Computational Fourier Optics (Bellingham: Washington SPIE Press) pp199−201

  • [1] 吴琴菲, 文锦辉. 基于智能搜寻者优化的频率分辨光学开关重构算法. 物理学报, 2021, 70(9): 090601. doi: 10.7498/aps.70.20201731
    [2] 江昱佼, 高亦谈, 黄沛, 赵昆, 许思源, 朱江峰, 方少波, 滕浩, 侯洵, 魏志义. 快速傅里叶变换在阿秒束线光路稳定控制中的应用. 物理学报, 2019, 68(21): 214204. doi: 10.7498/aps.68.20191164
    [3] 文锦辉, 胡婷, 吴琴菲. 快速扫描频率分辨光学开关装置测量超短激光脉冲. 物理学报, 2019, 68(11): 110601. doi: 10.7498/aps.68.20190034
    [4] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [5] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [6] 陈绍宽, 韦伟, 毛保华, 关伟. 基于改进时空Moran's I指数的道路交通状态特征分析. 物理学报, 2013, 62(14): 148901. doi: 10.7498/aps.62.148901
    [7] 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法. 物理学报, 2013, 62(1): 019701. doi: 10.7498/aps.62.019701
    [8] 陆大全, 胡巍, 钱列加, 范滇元. 等衍射超短脉冲厄米高斯光束在自由空间中的传输及其时空耦合效应. 物理学报, 2009, 58(3): 1655-1661. doi: 10.7498/aps.58.1655
    [9] 陈基根, 陈 高, 曾思良, 杨玉军, 朱颀人. 载波相位对超短脉冲谐波谱的影响. 物理学报, 2008, 57(7): 4104-4109. doi: 10.7498/aps.57.4104
    [10] 冯则胡, 傅喜泉, 章礼富, 徐慧文, 文双春. 超短脉冲激光空间调制下小尺度自聚焦的实验研究. 物理学报, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [11] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [12] 毕 磊, 包景东. 非线性耗散对亚稳态系统量子衰变速率的影响. 物理学报, 2007, 56(4): 1919-1923. doi: 10.7498/aps.56.1919
    [13] 马再如, 冯国英, 陈建国, 朱启华, 曾小明, 刘文兵, 周寿桓. 多个超短脉冲相干叠加构成窄带平顶长脉冲的研究. 物理学报, 2007, 56(2): 933-940. doi: 10.7498/aps.56.933
    [14] 邓玉强, 王清月, 吴祖斌, 张志刚. 载波-包络相位对于基频光与其自身倍频光脉冲合成的影响. 物理学报, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
    [15] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义. 飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究. 物理学报, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [16] 邓玉强, 吴祖斌, 陈盛华, 柴 路, 王清月, 张志刚. 自参考光谱相干法的小波变换相位重建. 物理学报, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [17] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王 逍, 郭 仪, 袁晓东, 彭志涛, 唐晓东. 高功率超短脉冲激光系统中用AOPDF实现增益窄化补偿的实验研究. 物理学报, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
    [18] 宋振明, 庞冬青, 张志刚, 王清月. 超短光脉冲在分段中空光波导中的光谱展宽和脉冲压缩. 物理学报, 2005, 54(6): 2769-2773. doi: 10.7498/aps.54.2769
    [19] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [20] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
计量
  • 文章访问数:  3355
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-02-22
  • 上网日期:  2023-03-18
  • 刊出日期:  2023-05-05

/

返回文章
返回