搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

快速扫描频率分辨光学开关装置测量超短激光脉冲

文锦辉 胡婷 吴琴菲

引用本文:
Citation:

快速扫描频率分辨光学开关装置测量超短激光脉冲

文锦辉, 胡婷, 吴琴菲

Measurement of ultrashort laser pulses with rapid-scanning frequency-resolved optical gating device

Wen Jin-Hui, Hu Ting, Wu Qin-Fei
PDF
HTML
导出引用
  • 频率分辨光学开关法是目前测量超短激光脉冲的主流方法之一. 本文比较了三大类二次谐波频率分辨光学开关系统的特点和适用范围, 提出将标准二次谐波频率分辨光学开关法改装成一种快速扫描频率分辨光学开关法(frequency-resolved optical gating, FROG)装置. 利用信号发生器输出的正弦信号同步地驱动音圈电机和扫描振镜, 其中音圈电机带动直角反射镜往复运动可实现快速的延时扫描, 与此同时扫描振镜快速转动进而按照延时顺序将自相关信号光谱反射至面阵相机感光面上的不同位置. 该正弦信号还用于触发面阵相机持续曝光, 即可拍摄到一幅完整的FROG迹线图, 曝光时间可小于1 s. 该方案在需要记录较大矩阵FROG迹线图的情形颇具优势, 例如可实现色散大的啁啾脉冲和结构复杂的超短脉冲的实时测量. 通过测量从自锁模钛宝石激光器输出的飞秒脉冲以及被200 mm厚的BK7玻璃块展宽后的啁啾脉冲的结构, 证实了该装置的实用性.
    Frequency-resolved optical gating (FROG) is now one of the main methods of characterizing the ultrashort laser pulses. There are mainly three SHG-FROG methods, i.e. the standard FROG, the single-shot FROG and GRENOUILLE, each of which has its own features and application areas. Although the standard SHG-FROG has balanced advantages in sensitivity, accuracy and applicability for various test pulses, its speed is much slower than the others’: it often takes a few seconds or even minutes to record the FROG trace, which is dependent on the size of FROG image. Nowadays continuous development of the technique of digital imaging brings to high resolution CCD/CMOS image cameras with tens of millions pixels and fast refreshing rate. Unfortunately the standard FROG cannot make use of these image cameras for the real-time measurement of ultrashort pulses. To solve this problem, in this paper a rapid-scanning FROG device based on the standard SHG-FROG is demonstrated, where sinusoidal waves from a signal generator synchronously drive a voice coil actuator and a galvo-scanner, so that the spectra of the autocorrelation at different delays are successively reflected onto an area camera. As long as the camera is triggered to shoot continuously, the entire FROG trace can be recorded quickly within 1 s. Furthermore, several guidelines for good performance with this device are provided, including the settings of the amplitude and frequency of the driving sinusoidal waves, the selections of the focuses of the collimating lens F1 and the focusing lens F2, and the method of delay calibration. This device is suitable for the real-time measurement of ultrashort pulses with large chirps or complex structures where large-size FROG images need to be captured. In order to show the capability of this device, femtosecond pulses delivered directly from a home-made Kerr-lens mode-locked Ti: sapphire laser as well as the chirp pulses dispersed by a 200 mm-thick BK7 slab are measured. Two scan ranges are selected in order to achieve enough effective data points in the FROG traces of these two test pulses. Using standard procedure of pulse retrieval of FROG, the two pulses are reconstructed with pulse widths 58 fs and 492 fs, respectively. From the retrieved spectral phases of these test pulses, the GDD value of the BK7 slab can be deduced to be 8740 fs2, which is in good agreement with the theoretical value of 8815 fs2. Thus the experimental results confirm the accuracy and applicability of this FROG device.
      通信作者: 文锦辉, wenjh@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 11534017)和国家自然科学基金(批准号: 61575223)资助的课题.
      Corresponding author: Wen Jin-Hui, wenjh@mail.sysu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11534017) and the National Natural Science Foundation of China (Grant No. 61575223).
    [1]

    张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨 2018 物理学报 67 197202Google Scholar

    Zhang S N, Zhu W H, Li J G, Jin Z M, Dai Y, Zhang Z Z, Ma G H, Yao J Q 2018 Acta Phys. Sin. 67 197202Google Scholar

    [2]

    李铭, 王兆华, 滕浩, 贺新奎, 韩海年, 李德华, 魏志义, Szymon S 2018 中国科学: 物理学 力学 天文学 48 024201

    Li M, Wang Z H, Teng H, He X K, Han H N, Li D H, Wei Z Y, Szymon S 2018 Sci. Sin.-Phys. Mech. Astron. 48 024201

    [3]

    彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳 2018 物理学报 67 210601Google Scholar

    Peng B, Qu X H, Zhang F M, Zhang T Y, Zhang T L, Liu X X, Xie Y 2018 Acta Phys. Sin. 67 210601Google Scholar

    [4]

    Zeweil A H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [5]

    Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar

    [6]

    黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 物理学报 67 214202Google Scholar

    Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar

    [7]

    Stibenz G, Steinmeyer G 2005 Opt. Express 13 2617Google Scholar

    [8]

    王兆华, 魏志义, 滕浩, 王鹏, 张杰 2003 物理学报 52 362Google Scholar

    Wang Z H, Wei Z Y, Teng H, Wang P, Zhang J 2003 Acta Phys. Sin. 52 362Google Scholar

    [9]

    Marceau C, Thomas S, Kassim Y, Gingras G, Witzel1 B 2015 Appl. Phys. B 119 339Google Scholar

    [10]

    Hause A, Kraf S, Rohrmann P, Mitschke F 2015 J. Opt. Soc. Am. B 32 868Google Scholar

    [11]

    马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇 2014 物理学报 63 240601Google Scholar

    Ma X L, Li P L, Guo H L, Zhang Y, Zhu T Y, Cao F J 2014 Acta Phys. Sin. 63 240601Google Scholar

    [12]

    Palaniyappan S, Shah R C, Johnson R, Shimada T, Gautier D C, Letzring S, Jung D, Hrlein R, Offermann D T, Fernndez J C, Hegelich B M 2010 Rev. Sci. Instrum. 81 10E103Google Scholar

    [13]

    Palaniyappan S, Hegelich B M, Wu H C, Jung D, Gautier D C, Yin L, Albright B J, Johnson R P, Shimada T, Letzring S, Offermann D T, Ren J, Huang C K, Hörlein R, Dromey B, Fernandez J C, Shah R C 2012 Nat. Phys. 87 63

    [14]

    O’Shea P, Kimmel M, Gu X, Trebino R 2001 Opt. Lett. 26 932Google Scholar

    [15]

    Cohen J, Lee D, Chauhan V, Vaughan P, Trebino R 2010 Opt. Express 18 17484Google Scholar

    [16]

    Yasa Z A, Amer N M 1981 Opt. Commum. 36 406Google Scholar

    [17]

    Kalpaxis A, Doukas A G, Budansky Y, Rosen D L, Katz A, Alfano R R 1982 Rev. Sci. Instrum. 53 960Google Scholar

    [18]

    Riffe D M, Sabbah A J 1998 Rev. Sci. Instrum. 69 3099Google Scholar

    [19]

    张伟力, 柴路, 戴建明, 陈野, 边自鹏, 郑学梅, 邢岐荣, 王清月 1997 中国激光 24 915Google Scholar

    Zhang W L, Cai L, Dai J M, Chen Y, Bian Z P, Zheng X M, Xing Q R, Wang Q Y 1997 Chin. J. Laser 24 915Google Scholar

    [20]

    Kane D J 2008 J. Opt. Soc. Am. B 25 A120Google Scholar

  • 图 1  快速扫描FROG装置结构图

    Fig. 1.  Experimental setup of rapid-scanning FROG device.

    图 3  重构出的脉冲A强度包络和相位曲线

    Fig. 3.  Reconstructed intensity and phase curves of pulse A.

    图 4  重构出的脉冲B强度包络和相位曲线

    Fig. 4.  Reconstructed intensity and phase curves of pulse B.

    图 2  脉冲A和脉冲B的FROG迹线图

    Fig. 2.  FROG traces of pulses A and B.

  • [1]

    张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨 2018 物理学报 67 197202Google Scholar

    Zhang S N, Zhu W H, Li J G, Jin Z M, Dai Y, Zhang Z Z, Ma G H, Yao J Q 2018 Acta Phys. Sin. 67 197202Google Scholar

    [2]

    李铭, 王兆华, 滕浩, 贺新奎, 韩海年, 李德华, 魏志义, Szymon S 2018 中国科学: 物理学 力学 天文学 48 024201

    Li M, Wang Z H, Teng H, He X K, Han H N, Li D H, Wei Z Y, Szymon S 2018 Sci. Sin.-Phys. Mech. Astron. 48 024201

    [3]

    彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳 2018 物理学报 67 210601Google Scholar

    Peng B, Qu X H, Zhang F M, Zhang T Y, Zhang T L, Liu X X, Xie Y 2018 Acta Phys. Sin. 67 210601Google Scholar

    [4]

    Zeweil A H 2000 J. Phys. Chem. A 104 5660Google Scholar

    [5]

    Kane D J, Trebino R 1993 Opt. Lett. 18 823Google Scholar

    [6]

    黄沛, 方少波, 黄杭东, 赵昆, 滕浩, 侯洵, 魏志义 2018 物理学报 67 214202Google Scholar

    Huang P, Fang S B, Huang H D, Zhao K, Teng H, Hou X, Wei Z Y 2018 Acta Phys. Sin. 67 214202Google Scholar

    [7]

    Stibenz G, Steinmeyer G 2005 Opt. Express 13 2617Google Scholar

    [8]

    王兆华, 魏志义, 滕浩, 王鹏, 张杰 2003 物理学报 52 362Google Scholar

    Wang Z H, Wei Z Y, Teng H, Wang P, Zhang J 2003 Acta Phys. Sin. 52 362Google Scholar

    [9]

    Marceau C, Thomas S, Kassim Y, Gingras G, Witzel1 B 2015 Appl. Phys. B 119 339Google Scholar

    [10]

    Hause A, Kraf S, Rohrmann P, Mitschke F 2015 J. Opt. Soc. Am. B 32 868Google Scholar

    [11]

    马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇 2014 物理学报 63 240601Google Scholar

    Ma X L, Li P L, Guo H L, Zhang Y, Zhu T Y, Cao F J 2014 Acta Phys. Sin. 63 240601Google Scholar

    [12]

    Palaniyappan S, Shah R C, Johnson R, Shimada T, Gautier D C, Letzring S, Jung D, Hrlein R, Offermann D T, Fernndez J C, Hegelich B M 2010 Rev. Sci. Instrum. 81 10E103Google Scholar

    [13]

    Palaniyappan S, Hegelich B M, Wu H C, Jung D, Gautier D C, Yin L, Albright B J, Johnson R P, Shimada T, Letzring S, Offermann D T, Ren J, Huang C K, Hörlein R, Dromey B, Fernandez J C, Shah R C 2012 Nat. Phys. 87 63

    [14]

    O’Shea P, Kimmel M, Gu X, Trebino R 2001 Opt. Lett. 26 932Google Scholar

    [15]

    Cohen J, Lee D, Chauhan V, Vaughan P, Trebino R 2010 Opt. Express 18 17484Google Scholar

    [16]

    Yasa Z A, Amer N M 1981 Opt. Commum. 36 406Google Scholar

    [17]

    Kalpaxis A, Doukas A G, Budansky Y, Rosen D L, Katz A, Alfano R R 1982 Rev. Sci. Instrum. 53 960Google Scholar

    [18]

    Riffe D M, Sabbah A J 1998 Rev. Sci. Instrum. 69 3099Google Scholar

    [19]

    张伟力, 柴路, 戴建明, 陈野, 边自鹏, 郑学梅, 邢岐荣, 王清月 1997 中国激光 24 915Google Scholar

    Zhang W L, Cai L, Dai J M, Chen Y, Bian Z P, Zheng X M, Xing Q R, Wang Q Y 1997 Chin. J. Laser 24 915Google Scholar

    [20]

    Kane D J 2008 J. Opt. Soc. Am. B 25 A120Google Scholar

  • [1] 陈经纬, 罗斌, 曾小明, 母杰, 王逍. 光参量啁啾脉冲放大数值模拟平台中超短脉冲聚焦模拟算法. 物理学报, 2023, 72(9): 094204. doi: 10.7498/aps.72.20222387
    [2] 吴琴菲, 文锦辉. 基于智能搜寻者优化的频率分辨光学开关重构算法. 物理学报, 2021, 70(9): 090601. doi: 10.7498/aps.70.20201731
    [3] 黄杭东, 滕浩, 詹敏杰, 许思源, 黄沛, 朱江峰, 魏志义. 基于瞬态光栅频率分辨光学开关法测量飞秒脉冲的研究. 物理学报, 2019, 68(7): 070602. doi: 10.7498/aps.68.20190165
    [4] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [5] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [6] 周文平, 万松明, 张庆礼, 殷绍唐, 尤静林, 王媛媛. KTa1-xNbxO3晶体生长固/液边界层结构的微区研究. 物理学报, 2010, 59(7): 5085-5090. doi: 10.7498/aps.59.5085
    [7] 陆大全, 胡巍, 钱列加, 范滇元. 等衍射超短脉冲厄米高斯光束在自由空间中的传输及其时空耦合效应. 物理学报, 2009, 58(3): 1655-1661. doi: 10.7498/aps.58.1655
    [8] 冯则胡, 傅喜泉, 章礼富, 徐慧文, 文双春. 超短脉冲激光空间调制下小尺度自聚焦的实验研究. 物理学报, 2008, 57(4): 2253-2259. doi: 10.7498/aps.57.2253
    [9] 陈基根, 陈 高, 曾思良, 杨玉军, 朱颀人. 载波相位对超短脉冲谐波谱的影响. 物理学报, 2008, 57(7): 4104-4109. doi: 10.7498/aps.57.4104
    [10] 邓玉强, 曹士英, 于 靖, 徐 涛, 王清月, 张志刚. 小波变换提取放大超短脉冲载波-包络相位的研究. 物理学报, 2008, 57(11): 7017-7021. doi: 10.7498/aps.57.7017
    [11] 马再如, 冯国英, 陈建国, 朱启华, 曾小明, 刘文兵, 周寿桓. 多个超短脉冲相干叠加构成窄带平顶长脉冲的研究. 物理学报, 2007, 56(2): 933-940. doi: 10.7498/aps.56.933
    [12] 邓玉强, 王清月, 吴祖斌, 张志刚. 载波-包络相位对于基频光与其自身倍频光脉冲合成的影响. 物理学报, 2006, 55(2): 737-742. doi: 10.7498/aps.55.737
    [13] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义. 飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究. 物理学报, 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [14] 邓玉强, 王清月, 张志刚. 频率分辨光学开关法行迹相位还原的时频分析. 物理学报, 2006, 55(12): 6454-6458. doi: 10.7498/aps.55.6454
    [15] 王兆华, 魏志义, 张 杰. 飞秒激光脉冲的频率分辨偏振光学开关法测量研究. 物理学报, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [16] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王 逍, 郭 仪, 袁晓东, 彭志涛, 唐晓东. 高功率超短脉冲激光系统中用AOPDF实现增益窄化补偿的实验研究. 物理学报, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
    [17] 宋振明, 庞冬青, 张志刚, 王清月. 超短光脉冲在分段中空光波导中的光谱展宽和脉冲压缩. 物理学报, 2005, 54(6): 2769-2773. doi: 10.7498/aps.54.2769
    [18] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [19] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [20] 王兆华, 魏志义, 滕 浩, 王 鹏, 张 杰. 飞秒激光脉冲的谐波频率分辨光学开关法测量研究. 物理学报, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
计量
  • 文章访问数:  6092
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 修回日期:  2019-03-06
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回