搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变组分Al对HfO2阻变特性影响: 第一性原理研究

代广珍 姜永召 倪天明 刘鑫 鲁麟 刘琦

引用本文:
Citation:

变组分Al对HfO2阻变特性影响: 第一性原理研究

代广珍, 姜永召, 倪天明, 刘鑫, 鲁麟, 刘琦

First principles study of effect of vaiable component Al on HfO2 resistance

Dai Guang-Zhen, Jiang Yong-Zhao, Ni Tian-Ming, Liu Xin, Lu Lin, Liu Qi
PDF
HTML
导出引用
  • 为了改善HfO2的阻变特性, 提高氧空位(VO)导电细丝形成的一致性和均匀性, 采用基于密度泛函理论的第一性原理计算方法研究了掺杂Al的HfO2阻变材料的微观特性. 结果表明, 间隙Al (Int-Al)更适合掺入到HfO2中, 并且Int-Al与VO相对位置越近, 阻变材料趋于稳定的收敛速度越快, 形成能越小. 不同Int-Al浓度对含有VO缺陷的HfO2超胞的影响结果显示, 当掺杂Int-Al浓度为4.04%时, 分波电荷态密度图能够形成相对较好的电荷通道, 最大等势面和临界等势面值均为最高, 有利于改善HfO2阻变材料中导电细丝形成的一致性和均匀性; 形成能计算结果显示, 当Int-Al浓度低于4.04%时形成能变化缓慢, 当高于4.04%时则异常增大, 表明缺陷体系随Int-Al浓度增大越来越难以形成; 进一步研究掺杂Int-Al浓度为4.04%时晶格结构的变化, 结果显示缺陷形成能显著降低, 有利于形成完美的导电通道. 该研究为改善基于HfO2阻变存储材料的性能有一定的借鉴意义.
    In order to improve the resistance properties of HfO2 and increase the consistency and uniformity of conductive filaments formed by oxygen vacancies (VO), the first-principles calculation method based on density functional theory is used to study the micro-properties of Al-doped HfO2 resistive materials. The results show that the interval Al (Int-Al) is more suitable for being incorporated into HfO2, and the closer to the relative position of VO the Int-Al, the faster the convergence rate of the resistive material tends to be stable, and the smaller the formation energy. The effects of different Int-Al concentrations on the formation of HfO2 supercells with VO defects show that when the concentration of doped Int-Al is 4.04%, the fractional charge state density map can form relatively good charge channels. The maximum and critical equipotential surface values are highest, which is conducive to improving the consistency and uniformity of the formation of conductive filaments in HfO2 resistive materials. The calculation of energy formation shows that the change is slow when the concentration of Int-Al is lower than 4.04%. When the concentration of Int-Al is higher than 4.04%, the abnormal increase occurs, which indicates that the defect system becomes more and more difficult to form with the increase of the concentration of Int-Al. The introduction of the impurity and the VO defect destroy the original complete crystal structure, which causes the position of the atoms around the impurity to shift, and the valence electron orbit and the energy level of the crystal are changed, and the distribution of the internal charges of the HfO2 defect system is affected. In order to study the effect of the change of the lattice structure on the formation of the VO conductive filament, the VASP software package is used to calculate the relative ratio of the atoms in the lattice structure of the HfO2 defect system as the reference and the relative ratio of the HfO2 defect system after the optimizing the lattice structure. Further study of the change of lattice structure, when the concentration of doped Int-Al is 4.04%, shows that the defect formation energy decreases significantly, which is conducive to the formation of perfect conductive channel. The conductive channel has a certain reference significance for improving the performance of HfO2 based resistive variable memory materials.
      通信作者: 姜永召, 1215032409@qq.com
    • 基金项目: 安徽省高等学校教育基金(批准号: KZ00216022)、安徽工程大学科研启动基金(2018YQQ007)和国家自然科学基金(批准号: 61306108, 61172131, 61271377)资助的课题.
      Corresponding author: Jiang Yong-Zhao, 1215032409@qq.com
    • Funds: Project supported by the Higher Education Foundation of Anhui Province, China (Grant No. KZ00216022), the Research start-up Fund of Anhui University of Engineering, China (Grant No. 2018YQQ007), and the National Natural Science Foundation of China (Grant Nos. 61306108, 61172131, 61271377).
    [1]

    赵强 2013 硕士学位论文 (安徽: 安徽大学)

    Zhao Q 2013 M. S. Thesis (Anhui: Anhui University) (in Chinese)

    [2]

    张文博, 王华, 许积文, 刘国保, 谢航, 杨玲 2018 材料导报 32 1932Google Scholar

    Zhang W B, Wang H, Xu J W, Liu G B, Xie H, Yang L 2018 Mater. Rev. 32 1932Google Scholar

    [3]

    杨龙康 2014 硕士学位论文 (西安: 西安电子科技大学)

    Yang L K 2014 M. S. Thesis (Xian: Xi'an University of Science and Technology) (in Chinese)

    [4]

    王源, 贾嵩, 甘学温 2011 北京大学学报 47 565Google Scholar

    Wang Y, Jia S, Gan X W 2011 Acta Sci. Natur. Univ. Pekinensis 47 565Google Scholar

    [5]

    Frascaroli J, Volpe F G, Brivio S, Spiga S 2015 Microelectron. Eng. 147 104Google Scholar

    [6]

    Hou T H, Lin K L, Shieh J, Lin J H, Chou C T, Lee Y J 2011 Appl. Phys. Lett. 98 771

    [7]

    李晓燕, 李颖弢, 高晓平, 陈传兵, 韩根亮 2018 科学通报 63 2954

    Li X Y, Li Y T, Gao X P, Chen C B, Han G L 2018 Chin. Sci. Bull. 63 2954

    [8]

    郭家俊, 董静雨, 康鑫, 陈伟, 赵旭 2018 物理学报 67 063101Google Scholar

    Guo J J, Dong J Y, Kang X, Chen W, Zhao X 2018 Acta Phys. Sin. 67 063101Google Scholar

    [9]

    殷一民, 程海峰, 刘东青, 张朝阳 2016 电子元件与材料 35 9

    Yin Y M, Cheng H F, Liu D Q, Zhang Z Y 2016 Electron. Compon. Mater. 35 9

    [10]

    张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮 2018 物理学报 67 057301Google Scholar

    Zhang Z C, Wang F, Wu S J, Li Y, Mi W, Zhao J S, Zhang K L 2018 Acta Phys. Sin. 67 057301Google Scholar

    [11]

    张颖, 龙世兵, 刘明 2017 物理 46 645Google Scholar

    Zhang Y, Long S B, Liu M 2017 Physics 46 645Google Scholar

    [12]

    赵远洋 2015 硕士学位论文 (安徽: 安徽大学)

    Zhao Y Y 2015 M. S. Thesis (Anhui: Anhui University) (in Chinese)

    [13]

    Xue K H, Blaise P, Fonseca L R C, Nishi Y 2013 Phys. Rev. Lett. 110 065502Google Scholar

    [14]

    刘森, 刘琦 2016 国防科技 37 4

    Liu S, Liu Q 2016 Natl. Def. Sci. Technol. 37 4

    [15]

    Wang Z, Zhu W G, Du A Y, Wu L, Fang Z, Tran X A 2012 IEEE Trans. Electron Devices 59 1203Google Scholar

    [16]

    Wei W, Chuai X, Lu N, Wang Y, Li M, Ye C, Liu M 2017 International Conference on Simulation of Semiconductor Processes and Devices Kamakura, Japan, September 7−9, 2017 p21

    [17]

    Magyari-Köpe B, Dan D, Liang Z, Nishi Y 2016 International Symposium on Vlsi Technology, Systems and Application Hsinchu, Taiwan, April 25−27, 2016 p1

    [18]

    Yang J, Dai Y, Lu S, Jiang X, Wang F, Chen J 2017 J. Semicond. 38 100

    [19]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li X F, Liu M, Dai Y H 2013 J. Semicond. 34 032001Google Scholar

    [20]

    Wei X D, Huang H, Ye C, Wei W, Zhou H, Chen Y, Zhang R L, Zhang L, Xia Q 2019 J. Alloys Compd. 775 1301Google Scholar

    [21]

    代广珍, 罗京, 汪家余, 杨金, 蒋先伟, 刘琦, 代月花, 陈军宁 2014 功能材料 45 15023Google Scholar

    Dai G Z, Luo J, Wang J Y, Yang J, Jiang X W, Liu Q, Dai Y H, Chen J N 2014 J. Funct. Mater. 45 15023Google Scholar

    [22]

    Alayan M, Vianello E, Padovani A, Salvo B D, Larcher L, Perniola L 2017 IEEE Des. Test 34 23

    [23]

    Gao B, Zhang H W, Yu S, Sun B, Liu L F, Liu X Y, Wang Y, Han R Q, Kang J F, Yu B, Wang Y Y 2009 Vlsi Technology Symposium on Kamakura Japan, September 7-9, 2009 p30

    [24]

    杨金 2014 博士学位论文 (安徽: 安徽大学)

    Yang J 2014 Ph. D. Dissertation (Anhui: Anhui University) (in Chinese)

    [25]

    Xie H W, Wang M, Kurunczi P, Erokhin Y, Liu Q, Lv H B, Li Y T, Long S B, Liu S, Liu M 2012 Am. Inst. Phys. 1496 26

    [26]

    Zhang H, Liu L, Gao B, Qiu Y 2011 Appl. Phys. Lett. 98 093509

    [27]

    Tan T T, Gao A, Zha G Q 2018 Superlattices Microstruct. 121 38Google Scholar

    [28]

    Zhao L, Clima S, Magyariköpe B, Jurczak M, Nishi Y 2015 Appl. Phys. Lett. 107 013504Google Scholar

    [29]

    李丛飞, 傅兴华, 李良荣, 赵海臣 2014 微纳电子技术 51 24

    Li C F, Fu X H, Li L R, Zhao H C 2014 Micronanoelectronic Technol. 51 24

    [30]

    Lu L, Liu Y H, Dai G Z, Zhang Y, Ding G G, Liu Q 2018 Optik 164 72Google Scholar

    [31]

    代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花 2015 物理学报 64 033101Google Scholar

    Dai G Z, Jiang X W, Xu T L, Liu Q, Chen J N, Dai Y H 2015 Acta Phys. Sin. 64 033101Google Scholar

    [32]

    庞华, 邓宁 2014 物理学报 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [33]

    罗岚, 熊志华, 周耐根 2016 材料导报 30 149

    Luo L, Xiong Z H, Zhou N G 2016 Mater. Rev. 30 149

    [34]

    蒋先伟, 陈军宁, 金波, 王菲菲, 鲁世斌 2016 合肥工业大学学报 39 934Google Scholar

    Jiang X W, Chen J N, Jin B, Wang F F, Lu S B 2016 J. Hefei Univ. Tech. 39 934Google Scholar

    [35]

    汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101Google Scholar

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101Google Scholar

    [36]

    蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁 2015 物理学报 64 213102Google Scholar

    Jiang X W, Lu S B, Dai G Z, Wang J Y, Jin B, Chen J N 2015 Acta Phys. Sin. 64 213102Google Scholar

    [37]

    代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风 2016 物理学报 65 073101Google Scholar

    Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B, Li X F 2016 Acta Phys. Sin. 65 073101Google Scholar

    [38]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes & Devices San Diego, California, September 9−11, 2009 p155

    [39]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [40]

    贾晓伟, 王敏 2018 材料导报 32 500

    Jia X W, Wang M 2018 Mater. Rev. 32 500

    [41]

    李春萍, 陈鑫, 张宝林 2015 材料导报 39 159Google Scholar

    Li C P, Chen X, Zhang B L 2015 Mater. Rev. 39 159Google Scholar

    [42]

    侯清玉, 赵春旺, 李继军, 王钢 2011 物理学报 60 047104Google Scholar

    Hou Q Y, Zhao C W, Li J J, Wang G 2011 Acta Phys. Sin. 60 047104Google Scholar

    [43]

    Dai Y H, Zhao Y Y, Wang J Y, Xu J B, Yang F 2015 AIP Adv. 5 017133Google Scholar

    [44]

    Zhao Y Y, Wang J Y, Xu J B, Yang F, Liu Q, Dai Y H 2014 J. Semicond. 35 25

    [45]

    蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁 2015 物理学报 64 091301Google Scholar

    Jiang X W, Dai G Z, Lu S B, Wang J Y, Dai Y H, Chen J N 2015 Acta Phys. Sin. 64 091301Google Scholar

  • 图 1  HfO2缺陷超胞模型 (a) Sub-Al掺杂到含有VO的HfO2; (b)—(f) Int-Al掺杂含有VO的HfO2, 掺杂Int-Al的个数分别为1—5

    Fig. 1.  HfO2 defect supercell model: (a) Sub-Al doping into HfO2 containing VO; (b)−(f) Int-Al doping into HfO2 containing VO, the number of Int-Al is 1 to 5.

    图 2  杂质Al的形成能 (插图中显示了杂质Al的存在方式, 虚线圆表示失去一个O原子后形成的VO)

    Fig. 2.  Formation energy of impurity Al, The illustration shows the existence of impurity Al. The dotted circle indicates the formation after losing an O atom.

    图 3  VO缺陷HfO2体系中Int-Al形成能 (插图显示了Int-Al与VO不同间距的分波电荷态密度)

    Fig. 3.  Int-Al formation energy in VO deficient HfO2 system, the illustration shows the partial wave charge density of Int-Al and VO at different pitches.

    图 4  不同浓度Int-Al体系的分波电荷态密度图 (a) 1.04%; (b) 2.06%; (c) 3.06%; (d) 4.04%; (e) 5%

    Fig. 4.  The partial wave charge density of Int-Al systems with different concentrations: (a) 1.04%; (b) 2.06%; (c) 3.06%; (d) 4.04%; (e) 5%.

    图 5  变组分Int-Al掺杂VO缺陷HfO2体系的分波电荷密度等势面值, 插图为Int-Al与VO共掺时的形成能

    Fig. 5.  The partial wave charge density equipotential surface value of variable component Int-Al doped VO defect HfO2 system. The illustration shows the formation energy of Int-Al and VO co-doping.

    图 6  HfO2缺陷超胞晶格结构不变的分波电荷态密度

    Fig. 6.  The partial wave charge density of in HfO2 defect supercell lattice with invariant lattice structure.

    表 1  m-HfO2晶格参数

    Table 1.  m-HfO2 lattice constants.

    晶格参数ɑ/nmb/nmc/nmβ/(°)
    计算值[38]0.5137 0.519500.5309099.7760
    实验值[39]0.5119 0.516900.5297099.1800
    本文扩展超胞1.02361.037141.0568299.3523
    本文原胞(= 超胞晶格参数/20)0.51180.518570.5284199.3523
    下载: 导出CSV
  • [1]

    赵强 2013 硕士学位论文 (安徽: 安徽大学)

    Zhao Q 2013 M. S. Thesis (Anhui: Anhui University) (in Chinese)

    [2]

    张文博, 王华, 许积文, 刘国保, 谢航, 杨玲 2018 材料导报 32 1932Google Scholar

    Zhang W B, Wang H, Xu J W, Liu G B, Xie H, Yang L 2018 Mater. Rev. 32 1932Google Scholar

    [3]

    杨龙康 2014 硕士学位论文 (西安: 西安电子科技大学)

    Yang L K 2014 M. S. Thesis (Xian: Xi'an University of Science and Technology) (in Chinese)

    [4]

    王源, 贾嵩, 甘学温 2011 北京大学学报 47 565Google Scholar

    Wang Y, Jia S, Gan X W 2011 Acta Sci. Natur. Univ. Pekinensis 47 565Google Scholar

    [5]

    Frascaroli J, Volpe F G, Brivio S, Spiga S 2015 Microelectron. Eng. 147 104Google Scholar

    [6]

    Hou T H, Lin K L, Shieh J, Lin J H, Chou C T, Lee Y J 2011 Appl. Phys. Lett. 98 771

    [7]

    李晓燕, 李颖弢, 高晓平, 陈传兵, 韩根亮 2018 科学通报 63 2954

    Li X Y, Li Y T, Gao X P, Chen C B, Han G L 2018 Chin. Sci. Bull. 63 2954

    [8]

    郭家俊, 董静雨, 康鑫, 陈伟, 赵旭 2018 物理学报 67 063101Google Scholar

    Guo J J, Dong J Y, Kang X, Chen W, Zhao X 2018 Acta Phys. Sin. 67 063101Google Scholar

    [9]

    殷一民, 程海峰, 刘东青, 张朝阳 2016 电子元件与材料 35 9

    Yin Y M, Cheng H F, Liu D Q, Zhang Z Y 2016 Electron. Compon. Mater. 35 9

    [10]

    张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮 2018 物理学报 67 057301Google Scholar

    Zhang Z C, Wang F, Wu S J, Li Y, Mi W, Zhao J S, Zhang K L 2018 Acta Phys. Sin. 67 057301Google Scholar

    [11]

    张颖, 龙世兵, 刘明 2017 物理 46 645Google Scholar

    Zhang Y, Long S B, Liu M 2017 Physics 46 645Google Scholar

    [12]

    赵远洋 2015 硕士学位论文 (安徽: 安徽大学)

    Zhao Y Y 2015 M. S. Thesis (Anhui: Anhui University) (in Chinese)

    [13]

    Xue K H, Blaise P, Fonseca L R C, Nishi Y 2013 Phys. Rev. Lett. 110 065502Google Scholar

    [14]

    刘森, 刘琦 2016 国防科技 37 4

    Liu S, Liu Q 2016 Natl. Def. Sci. Technol. 37 4

    [15]

    Wang Z, Zhu W G, Du A Y, Wu L, Fang Z, Tran X A 2012 IEEE Trans. Electron Devices 59 1203Google Scholar

    [16]

    Wei W, Chuai X, Lu N, Wang Y, Li M, Ye C, Liu M 2017 International Conference on Simulation of Semiconductor Processes and Devices Kamakura, Japan, September 7−9, 2017 p21

    [17]

    Magyari-Köpe B, Dan D, Liang Z, Nishi Y 2016 International Symposium on Vlsi Technology, Systems and Application Hsinchu, Taiwan, April 25−27, 2016 p1

    [18]

    Yang J, Dai Y, Lu S, Jiang X, Wang F, Chen J 2017 J. Semicond. 38 100

    [19]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li X F, Liu M, Dai Y H 2013 J. Semicond. 34 032001Google Scholar

    [20]

    Wei X D, Huang H, Ye C, Wei W, Zhou H, Chen Y, Zhang R L, Zhang L, Xia Q 2019 J. Alloys Compd. 775 1301Google Scholar

    [21]

    代广珍, 罗京, 汪家余, 杨金, 蒋先伟, 刘琦, 代月花, 陈军宁 2014 功能材料 45 15023Google Scholar

    Dai G Z, Luo J, Wang J Y, Yang J, Jiang X W, Liu Q, Dai Y H, Chen J N 2014 J. Funct. Mater. 45 15023Google Scholar

    [22]

    Alayan M, Vianello E, Padovani A, Salvo B D, Larcher L, Perniola L 2017 IEEE Des. Test 34 23

    [23]

    Gao B, Zhang H W, Yu S, Sun B, Liu L F, Liu X Y, Wang Y, Han R Q, Kang J F, Yu B, Wang Y Y 2009 Vlsi Technology Symposium on Kamakura Japan, September 7-9, 2009 p30

    [24]

    杨金 2014 博士学位论文 (安徽: 安徽大学)

    Yang J 2014 Ph. D. Dissertation (Anhui: Anhui University) (in Chinese)

    [25]

    Xie H W, Wang M, Kurunczi P, Erokhin Y, Liu Q, Lv H B, Li Y T, Long S B, Liu S, Liu M 2012 Am. Inst. Phys. 1496 26

    [26]

    Zhang H, Liu L, Gao B, Qiu Y 2011 Appl. Phys. Lett. 98 093509

    [27]

    Tan T T, Gao A, Zha G Q 2018 Superlattices Microstruct. 121 38Google Scholar

    [28]

    Zhao L, Clima S, Magyariköpe B, Jurczak M, Nishi Y 2015 Appl. Phys. Lett. 107 013504Google Scholar

    [29]

    李丛飞, 傅兴华, 李良荣, 赵海臣 2014 微纳电子技术 51 24

    Li C F, Fu X H, Li L R, Zhao H C 2014 Micronanoelectronic Technol. 51 24

    [30]

    Lu L, Liu Y H, Dai G Z, Zhang Y, Ding G G, Liu Q 2018 Optik 164 72Google Scholar

    [31]

    代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花 2015 物理学报 64 033101Google Scholar

    Dai G Z, Jiang X W, Xu T L, Liu Q, Chen J N, Dai Y H 2015 Acta Phys. Sin. 64 033101Google Scholar

    [32]

    庞华, 邓宁 2014 物理学报 63 147301Google Scholar

    Pang H, Deng N 2014 Acta Phys. Sin. 63 147301Google Scholar

    [33]

    罗岚, 熊志华, 周耐根 2016 材料导报 30 149

    Luo L, Xiong Z H, Zhou N G 2016 Mater. Rev. 30 149

    [34]

    蒋先伟, 陈军宁, 金波, 王菲菲, 鲁世斌 2016 合肥工业大学学报 39 934Google Scholar

    Jiang X W, Chen J N, Jin B, Wang F F, Lu S B 2016 J. Hefei Univ. Tech. 39 934Google Scholar

    [35]

    汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101Google Scholar

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101Google Scholar

    [36]

    蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁 2015 物理学报 64 213102Google Scholar

    Jiang X W, Lu S B, Dai G Z, Wang J Y, Jin B, Chen J N 2015 Acta Phys. Sin. 64 213102Google Scholar

    [37]

    代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风 2016 物理学报 65 073101Google Scholar

    Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B, Li X F 2016 Acta Phys. Sin. 65 073101Google Scholar

    [38]

    Zhang H W, Gao B, Yu S M, Lai L, Zeng L, Sun B, Liu L F, Liu X Y, Lu J, Han R Q, Kang J F 2009 International Conference on Simulation of Semiconductor Processes & Devices San Diego, California, September 9−11, 2009 p155

    [39]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [40]

    贾晓伟, 王敏 2018 材料导报 32 500

    Jia X W, Wang M 2018 Mater. Rev. 32 500

    [41]

    李春萍, 陈鑫, 张宝林 2015 材料导报 39 159Google Scholar

    Li C P, Chen X, Zhang B L 2015 Mater. Rev. 39 159Google Scholar

    [42]

    侯清玉, 赵春旺, 李继军, 王钢 2011 物理学报 60 047104Google Scholar

    Hou Q Y, Zhao C W, Li J J, Wang G 2011 Acta Phys. Sin. 60 047104Google Scholar

    [43]

    Dai Y H, Zhao Y Y, Wang J Y, Xu J B, Yang F 2015 AIP Adv. 5 017133Google Scholar

    [44]

    Zhao Y Y, Wang J Y, Xu J B, Yang F, Liu Q, Dai Y H 2014 J. Semicond. 35 25

    [45]

    蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁 2015 物理学报 64 091301Google Scholar

    Jiang X W, Dai G Z, Lu S B, Wang J Y, Dai Y H, Chen J N 2015 Acta Phys. Sin. 64 091301Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究. 物理学报, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质. 物理学报, 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [3] 丁超, 李卫, 刘菊燕, 王琳琳, 蔡云, 潘沛锋. Sb,S共掺杂SnO2电子结构的第一性原理分析. 物理学报, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算. 物理学报, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [5] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [7] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, 2015, 64(9): 091301. doi: 10.7498/aps.64.091301
    [8] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [9] 谢知, 程文旦. TiO2纳米管电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [10] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究. 物理学报, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [11] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [14] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [15] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [16] 于大龙, 陈玉红, 曹一杰, 张材荣. Li2NH晶体结构建模和电子结构的第一性原理研究. 物理学报, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [17] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [18] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
    [19] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [20] 李正法, 钟维烈, 裘忠平, 葛洪良, 张沛霖, 王春雷. 钛酸铋钡陶瓷的介电性、铁电性及对晶格结构的依赖性. 物理学报, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
计量
  • 文章访问数:  8428
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-08
  • 修回日期:  2019-03-29
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回