搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准Λ型四能级系统选择反射光谱

孟腾飞 田剑锋 周瑶瑶

引用本文:
Citation:

准Λ型四能级系统选择反射光谱

孟腾飞, 田剑锋, 周瑶瑶

Selective reflection spectrum in a quasi-lambda four-level atomic system

Meng Teng-Fei, Tian Jian-Feng, Zhou Yao-Yao
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 运用密度矩阵理论研究了气固界面准$\Lambda$型四能级原子系统的非线性选择反射光谱. 基于刘维尔方程给出了一阶近似条件下探测光场的解析式. 在探测场为弱场时, 分析了信号场拉比频率、失谐量和耦合场失谐量对反射光谱线型的影响. 数值模拟表明: 信号场参与产生的选择反射峰线宽可以利用信号场拉比频率进行调节, 通过调节信号场频率失谐量可以实现选择反射峰到透明窗口的转化, 选择反射峰和透明窗口的位置可以通过耦合场失谐量实现调谐. 利用三种电子跃迁路径以及缀饰态理论对所得结果进行了解释. 本文结果为研究气固界面原子的量子相干和动力学过程提供理论参考.
    Selective reflection (SR) from the interface between transparent medium and dilute vapour is caused by the atomic vapor near the interface. The sub-Doppler structure in SR is due to the deexcitation caused by the collision between atomic vapor and the wall. Beacuse the interaction region between atomic vapor and incident light is on the order of a few hundred nanometers, SR has low optical loss and high spatial resolution. The experimental device of SR is simple. Because of the above characteristics, the SR has been widely studied and applied. The nonlinear SR spectrum of quasi lambda-type four-level system at gas-solid interface is studied theoretically in this paper. By sloving the density matrix equations, the approximate analytic solution of the matrix element associated with the probe field is obtained at normal incidence when the intensity of the probe field is very weak. The effect of the Rabi frequency, the detuning of the signal field and the detuning of the coupling field on the lineshape are analyzed by numerical simulation, respectively. Three peaks and two transparent windows appear in SR spectrum when the detuning of coupling field and signal field are both zero. The middle peak is generated due to the participation of signal field, and the other two peaks are caused by the other two fields. The linewidth and the amplitude of the middle peak can be changed by varying the Rabi frequency of signal field, and the other two peaks have little effect on the Rabi frequency of signal field. The signal generated due to the participation of signal field can be transformed from peak to transparent window when the detuning value of the signal field is equal to the Rabi frequency of coupling field. When the detuning value of the signal field is not equal to the Rabi frequency of coupling field, a dispersion-like signal between reflection peak and transparent window is generated due to the participation of signal field. The position of peak and transparent window can be manipulated by controlling the detuning value of the coupling field. When the detuning value of coupling field decreases from zero, three peaks all shift to red detuning direction. When the detuning value of coupling field is blue-detuned and increases, three peaks all shift to blue detuning direction. The numerical results can be explained by using the various electric transition pathways and dressed state theory. This study is helpful in investigating quantum coherence and dynamic process of atoms at gas-solid interface.
      通信作者: 孟腾飞, mengtf2007@126.com
    • 基金项目: 国家自然科学基金(批准号11804246)资助的课题
      Corresponding author: Meng Teng-Fei, mengtf2007@126.com
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11804246)
    [1]

    Schuurmans M F H 1976 J. Phys. (Paris) 37 469Google Scholar

    [2]

    Thomas R, Kupchak C, Agarwal G S, Lvovsky A I 2013 Opt. Express 21 6880Google Scholar

    [3]

    Du C, Jing Q, Hu Z 2015 Phys. Rev. A 91 013817Google Scholar

    [4]

    Khachatryana D N, Grigoryan G G 2019 J. Contemp. Phys. (Armenian Ac. Sci.) 54 185Google Scholar

    [5]

    Sautenkov V A, Rostovtsev Y V, Eliel E R 2008 Phys. Rev. A 78 013802Google Scholar

    [6]

    Zhao Y T, Zhao J M, Huang T, Xiao L T, Jia S T 2005 Chin. Phys. Lett. 22 1668Google Scholar

    [7]

    Lorenz V O, Cundiff S T 2005 Phys. Rev. Lett. 95 163601Google Scholar

    [8]

    Thomas R J 2012 Ph. D. Dissertation (Calgary: University of Calgary

    [9]

    Keaveney J, Hughes I G, Sargsyan A, Sarkisyan D, Adams C S 2012 Phys. Rev. Lett. 109 233001Google Scholar

    [10]

    Stern L, Grajower M, Levy U 2014 Nat. Commun. 5 4865Google Scholar

    [11]

    Sautenkov V A, van Kampen H, Eliel E R, Woerdman J P 1996 Phys. Rev. Lett. 77 3327Google Scholar

    [12]

    Li H, Varzhapetyan T S, Sautenkov V A, Rostovtsev Y V, Chen H, Sarkisyan D, Scully M O 2008 Appl. Phys. B 91 229

    [13]

    Sargsyan A, Klinger E, Hakhumyan G, Tonoyan A, Papoyan A, Leroy C, Sarkisyan D 2017 J. Opt. Soc. Am. B 34 776Google Scholar

    [14]

    Klinger E, Sargsyan A, Tonoyan A, Hakhumyan G, Papoyan A, Leroy C, Sarkisyan D 2017 Eur. Phys. J. D 71 216Google Scholar

    [15]

    Nienhuis G, Schuller F, Ducloy M 1988 Phys. Rev. A 38 5197Google Scholar

    [16]

    Guo J, Cooper J, Gallagher A 1996 Phys. Rev. A 53 1130Google Scholar

    [17]

    Khachatryan D N 2019 Opt. Commun. 436 76Google Scholar

    [18]

    Nienhuis G, Schuller F 1994 Phys. Rev. A 50 1586Google Scholar

    [19]

    Li Y Y, Li L, Lu Y X, Zhao X X, Xu K W, Zhang Y Q, Zhang Y P 2013 Opt. Express 21 8311Google Scholar

    [20]

    Meng T F, Ji Z H, Su D Q, Zhao Y T, Xiao L T, Jia S T 2016 Ann. Phys. (Berlin) 528 512Google Scholar

    [21]

    Schuller F, Amy-Klein A, Saltiel S 1996 Phys. Rev. A 53 3647Google Scholar

    [22]

    Gorris-Neveux M, Monnot P, Saltiel S, Barbé R, Keller J C, Ducloy M 1996 Phys. Rev. A 54 3386Google Scholar

    [23]

    Sargsyan A, Papoyan A, Hughes I G, Adams C S, Sarkisyan D 2017 Opt. Lett. 42 1476Google Scholar

    [24]

    Yan J L, Ota F, San Jose B A, Akagi K 2016 Adv. Funct. Mater. 27 1604529

    [25]

    黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [26]

    Alotaibi H M M, Sanders B C 2016 Phys. Rev. A 94 053832Google Scholar

    [27]

    Rebić S, Vitali D, Ottaviani C, Tombesi P, Artoni M, Cataliotti F, Corbalán R 2004 Phys. Rev. A 70 032317Google Scholar

    [28]

    Niu Y P, Gong S Q, Li R X, Xu Z Z, Liang X Y 2005 Opt. Lett. 30 3371Google Scholar

    [29]

    Mahmoudi M, Fleischhaker R, Sahrai M, Evers J 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025504Google Scholar

    [30]

    Gea-Banacloche J, Li Y Q, Jin S Z, Xiao M 1995 Phys. Rev. A 51 576Google Scholar

    [31]

    Wielandy S, Gaeta A L 1998 Phys. Rev. A 58 2500Google Scholar

    [32]

    Schuller F, Gorceix O, Ducloy M 1993 Phys. Rev. A 47 519Google Scholar

  • 图 1  (a)探测场、信号场和耦合场入射到气固界面示意图; (b)准$ \Lambda $型四能级原子系统能级示意图

    Fig. 1.  Gas-solid interface with a probe field, a signal field and a coupling field (a) and level diagram of quasi lambda-type four-level atomic system (b)

    图 2  不同信号场拉比频率的准$ \Lambda $型选择反射光谱

    Fig. 2.  The quasi lambda-type SR spectroscopy under different Rabi frequencies of signal field

    图 3  $ \sigma_{31} $$ \sigma_{41}$为0 = 0或$ \neq 0 $时的准$ \Lambda $型选择反射光谱

    Fig. 3.  The quasi lambda-type SR spectroscopy in the present or absent of $ \sigma_{31} $ and $ \sigma_{41} $

    图 4  信号场频率失谐量为$ {-0.8 k_{\rm p}}{v_0} $, $ 0 $, $ 0.8{k_{\rm p}}{v_0} $的准$ \Lambda $型选择反射光谱

    Fig. 4.  The quasi lambda-type SR spectroscopy when the frequency detuning of signal field is $ {-0.8 k_{\rm p}}{v_0} $, $ 0 $, $ 0.8{k_{\rm p}}{v_0} $

    图 5  $ \Lambda $型四能级原子系统缀饰态能级图

    Fig. 5.  Dressed state picture in a quasi lambda-type four-level atomic system

    图 6  不同耦合场频率失谐量的准$ \Lambda $型选择反射光谱

    Fig. 6.  The quasi lambda-type SR spectroscopy under different frequency detuning of coupling field

  • [1]

    Schuurmans M F H 1976 J. Phys. (Paris) 37 469Google Scholar

    [2]

    Thomas R, Kupchak C, Agarwal G S, Lvovsky A I 2013 Opt. Express 21 6880Google Scholar

    [3]

    Du C, Jing Q, Hu Z 2015 Phys. Rev. A 91 013817Google Scholar

    [4]

    Khachatryana D N, Grigoryan G G 2019 J. Contemp. Phys. (Armenian Ac. Sci.) 54 185Google Scholar

    [5]

    Sautenkov V A, Rostovtsev Y V, Eliel E R 2008 Phys. Rev. A 78 013802Google Scholar

    [6]

    Zhao Y T, Zhao J M, Huang T, Xiao L T, Jia S T 2005 Chin. Phys. Lett. 22 1668Google Scholar

    [7]

    Lorenz V O, Cundiff S T 2005 Phys. Rev. Lett. 95 163601Google Scholar

    [8]

    Thomas R J 2012 Ph. D. Dissertation (Calgary: University of Calgary

    [9]

    Keaveney J, Hughes I G, Sargsyan A, Sarkisyan D, Adams C S 2012 Phys. Rev. Lett. 109 233001Google Scholar

    [10]

    Stern L, Grajower M, Levy U 2014 Nat. Commun. 5 4865Google Scholar

    [11]

    Sautenkov V A, van Kampen H, Eliel E R, Woerdman J P 1996 Phys. Rev. Lett. 77 3327Google Scholar

    [12]

    Li H, Varzhapetyan T S, Sautenkov V A, Rostovtsev Y V, Chen H, Sarkisyan D, Scully M O 2008 Appl. Phys. B 91 229

    [13]

    Sargsyan A, Klinger E, Hakhumyan G, Tonoyan A, Papoyan A, Leroy C, Sarkisyan D 2017 J. Opt. Soc. Am. B 34 776Google Scholar

    [14]

    Klinger E, Sargsyan A, Tonoyan A, Hakhumyan G, Papoyan A, Leroy C, Sarkisyan D 2017 Eur. Phys. J. D 71 216Google Scholar

    [15]

    Nienhuis G, Schuller F, Ducloy M 1988 Phys. Rev. A 38 5197Google Scholar

    [16]

    Guo J, Cooper J, Gallagher A 1996 Phys. Rev. A 53 1130Google Scholar

    [17]

    Khachatryan D N 2019 Opt. Commun. 436 76Google Scholar

    [18]

    Nienhuis G, Schuller F 1994 Phys. Rev. A 50 1586Google Scholar

    [19]

    Li Y Y, Li L, Lu Y X, Zhao X X, Xu K W, Zhang Y Q, Zhang Y P 2013 Opt. Express 21 8311Google Scholar

    [20]

    Meng T F, Ji Z H, Su D Q, Zhao Y T, Xiao L T, Jia S T 2016 Ann. Phys. (Berlin) 528 512Google Scholar

    [21]

    Schuller F, Amy-Klein A, Saltiel S 1996 Phys. Rev. A 53 3647Google Scholar

    [22]

    Gorris-Neveux M, Monnot P, Saltiel S, Barbé R, Keller J C, Ducloy M 1996 Phys. Rev. A 54 3386Google Scholar

    [23]

    Sargsyan A, Papoyan A, Hughes I G, Adams C S, Sarkisyan D 2017 Opt. Lett. 42 1476Google Scholar

    [24]

    Yan J L, Ota F, San Jose B A, Akagi K 2016 Adv. Funct. Mater. 27 1604529

    [25]

    黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [26]

    Alotaibi H M M, Sanders B C 2016 Phys. Rev. A 94 053832Google Scholar

    [27]

    Rebić S, Vitali D, Ottaviani C, Tombesi P, Artoni M, Cataliotti F, Corbalán R 2004 Phys. Rev. A 70 032317Google Scholar

    [28]

    Niu Y P, Gong S Q, Li R X, Xu Z Z, Liang X Y 2005 Opt. Lett. 30 3371Google Scholar

    [29]

    Mahmoudi M, Fleischhaker R, Sahrai M, Evers J 2008 J. Phys. B: At. Mol. Opt. Phys. 41 025504Google Scholar

    [30]

    Gea-Banacloche J, Li Y Q, Jin S Z, Xiao M 1995 Phys. Rev. A 51 576Google Scholar

    [31]

    Wielandy S, Gaeta A L 1998 Phys. Rev. A 58 2500Google Scholar

    [32]

    Schuller F, Gorceix O, Ducloy M 1993 Phys. Rev. A 47 519Google Scholar

  • [1] 段昊男, 姬中华, 刘伟新, 苏殿强, 李经宽, 赵延霆. 基于射频场缀饰的直流电场Floquet-EIT光谱特性研究. 物理学报, 2025, 74(8): . doi: 10.7498/aps.74.20250052
    [2] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱. 物理学报, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [3] 孟举, 何贞岑, 颜君, 吴泽清, 姚科, 李冀光, 吴勇, 王建国. 电四极跃迁对电子束离子阱等离子体中离子能级布居的影响. 物理学报, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [4] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [5] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [6] 王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱. 物理学报, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
    [7] 李群, 屈媛, 班士良. 缓冲层对量子阱二能级系统中电子子带间跃迁光吸收的影响. 物理学报, 2017, 66(7): 077301. doi: 10.7498/aps.66.077301
    [8] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [9] 张蕾, 戈燕, 张向阳. 基于量子相干控制吸收的准Λ型四能级原子局域化研究. 物理学报, 2015, 64(13): 134204. doi: 10.7498/aps.64.134204
    [10] 罗晓华. Schrödinger方程的一般解与超晶格多量子阱的电子跃迁. 物理学报, 2014, 63(1): 017302. doi: 10.7498/aps.63.017302
    [11] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [12] 王琪, 樊群超, 孙卫国, 冯灏. 精确研究NbN分子d1+b1+电子态跃迁的P线系发射光谱. 物理学报, 2012, 61(4): 043301. doi: 10.7498/aps.61.043301
    [13] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频. 物理学报, 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [14] 杨永明, 许启明, 张彦鹏. N5B五能级系统中重复缀饰四波混频研究. 物理学报, 2009, 58(1): 290-297. doi: 10.7498/aps.58.290
    [15] 陈 峻, 刘正东, 尤素萍. 准Λ型四能级原子系统中的烧孔和光学双稳现象. 物理学报, 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [16] 周青春, 祝世宁. 与准Λ型四能级系统互作用光场的熵演化. 物理学报, 2005, 54(3): 1184-1189. doi: 10.7498/aps.54.1184
    [17] 张向阳, 李永放, 孙建锋, 王永昌. 准Λ型四能级系统中的超窄谱线的研究. 物理学报, 2002, 51(1): 36-41. doi: 10.7498/aps.51.36
    [18] 屈卫星, 徐至展. 二阶离化对缀饰态稳定性的影响. 物理学报, 1993, 42(3): 373-378. doi: 10.7498/aps.42.373
    [19] 张存洲, 张光寅. CdSnAs2的基本反射光谱. 物理学报, 1966, 22(8): 955-957. doi: 10.7498/aps.22.955
    [20] 张光寅, 张存洲. 从基本反射光谱研究金刚石型和闪锌矿型半导体的能带结构. 物理学报, 1966, 22(9): 982-1003. doi: 10.7498/aps.22.982
计量
  • 文章访问数:  7521
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-17
  • 修回日期:  2019-09-17
  • 上网日期:  2019-12-05
  • 刊出日期:  2020-01-05

/

返回文章
返回