搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子相干控制吸收的准Λ型四能级原子局域化研究

张蕾 戈燕 张向阳

引用本文:
Citation:

基于量子相干控制吸收的准Λ型四能级原子局域化研究

张蕾, 戈燕, 张向阳

Study on atomic localization of Λ-type quasi-four level atoms based on absorption with quantum coherent control

Zhang Lei, Ge Yan, Zhang Xiang-Yang
PDF
导出引用
  • 提出了一种基于量子相干控制吸收的对准Λ型四能级原子进行二维局域化方案. 利用密度矩阵微扰理论, 得到了确定原子空间位置信息的筛选函数解析表达式. 在缀饰态表象中, 分析了在相干控制场作用下原子初始状态对原子局域的影响. 数值模拟了控制场参量对原子局域化结果的影响. 研究发现原子局域化结果与初始时刻在控制场作用下原子在下能态的布局、下能级间产生的极化密切相关; 不管探测场与耦合场是否满足电磁感应透明配置条件, 通过改变控制场中的行波场的振幅和探测场的失谐量, 均可实现高精度原子局域化, 在亚波长范围内测量到原子的概率达到100%.
    A scheme of two-dimensional atomic localization of the Λ-type quasi-four-level atoms based on quantum-coherent-controlled absorption is proposed. Using the perturbation theory of the density matrix, the filter function is derived for the position probability distribution of atoms, which is determined by the imaginary part of the optical susceptibility. Because of the space-dependent interaction between atoms and fields, the position information is contained in the filter function, which provides an approach to explore the spacial position probability distribution of a single atom. Effect of the initial state of the atom under coherent control on the atomic localization is analyzed. It is found that the atomic localization is related to the initial atom distribution and the dipole moment between two lower levels under the coherent field control. When probing field and coupling field are under the configuration of the electromagnetically induced transparency, the position of atoms can be localized in the domain of sub wavelength; when the electromagnetically induced transparency is not satisfied, an atom can be measured in a sub wave region with the probability of 100% by changing the traveling wave amplitude in the controlling field and the detuning in the probing field.
    • 基金项目: 国家自然科学基金(批准号:60875084,61273017)、中央高校基本科研业务费专项资金(批准号:JUSRP21118,JUSRP211A24)和教育部留学回国人员科研启动基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60875084, 61273017), the fundamental Research Funds for the Central Universities (Grant Nos. JUSRP21118, JUSRP211A24), and the Project Sponsored by ROCS, SEM.
    [1]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047

    [2]

    Phillips W D 1998 Rev.Mod.Phys. 70 721

    [3]

    Johnson K S, Thywissen J H, Dekker N H, Berggren K K, Chu A P, Younkin R, Prentiss M 1998 Science 280 1583

    [4]

    Collins G P 1996 Phys. Today 49 18

    [5]

    Kapale K T, Qamar S, Zubairy M S 2003 Phys Rev. A 67 023805

    [6]

    Fleishhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [7]

    Harris S E 1994 Opt. Lett. 19 2018

    [8]

    Camacho R M, Vudyasetu P K, Howell J C 2009 Nature photonics 3 103

    [9]

    Fleischhauer M 2009 Nature photonics 3 76

    [10]

    Nikoghosyan G, Fleischhauer M 2009 Phys. Rev. A 80 013818

    [11]

    Niu Y P, Li R X, Gong S Q 2005 Phys. Rev. A 71 043819

    [12]

    Li F L, Zhu S Y 1999 Phys. Rev. A 59 2330

    [13]

    Wan R G, Zhang T Y, Kou J 2013 Phys. Rev. A 87 043816

    [14]

    Sahrai M, Tajalli H, Kapale K T, Zubairy M S 2005 Phys. Rev. A 72 013820

    [15]

    Sahrai M, Tajalli H 2013 JOSA B 30 512

    [16]

    Rahmatullah, Qamar S 2013 Phys. Rev. A 88 013846

    [17]

    Ivanov V S, Rozhdestvensky Y V, Suominen K A 2014 Phys. Rev. A 90 063802

    [18]

    Ivanov V, Rozhdestvensky Y 2010 Phys. Rev. A 81 033809

    [19]

    Qi Y H, Zhou F X, Huang T, Niu Y P, Gong S Q 2012 J. Mod. Opt. 59 1092

    [20]

    Wan R G, Kou J, Jiang L, Jiang Y, Gao J Y 2011 JOSA B 28 622

    [21]

    Jin L L, Sun H, Niu Y P, Jin S Q, Gong S Q 2009 J. Mod. Opt. 56 805

    [22]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) p225

    [23]

    Liu C P, Gong S Q, Cheng D C, Fan X J, Xu Z Z 2006 Phys. Rev. A 73 025801

    [24]

    Ghafoor F 2011 Phys.Rev.A 84 063849

  • [1]

    Zwierlein M W, Abo-Shaeer J R, Schirotzek A, Schunck C H, Ketterle W 2005 Nature 435 1047

    [2]

    Phillips W D 1998 Rev.Mod.Phys. 70 721

    [3]

    Johnson K S, Thywissen J H, Dekker N H, Berggren K K, Chu A P, Younkin R, Prentiss M 1998 Science 280 1583

    [4]

    Collins G P 1996 Phys. Today 49 18

    [5]

    Kapale K T, Qamar S, Zubairy M S 2003 Phys Rev. A 67 023805

    [6]

    Fleishhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [7]

    Harris S E 1994 Opt. Lett. 19 2018

    [8]

    Camacho R M, Vudyasetu P K, Howell J C 2009 Nature photonics 3 103

    [9]

    Fleischhauer M 2009 Nature photonics 3 76

    [10]

    Nikoghosyan G, Fleischhauer M 2009 Phys. Rev. A 80 013818

    [11]

    Niu Y P, Li R X, Gong S Q 2005 Phys. Rev. A 71 043819

    [12]

    Li F L, Zhu S Y 1999 Phys. Rev. A 59 2330

    [13]

    Wan R G, Zhang T Y, Kou J 2013 Phys. Rev. A 87 043816

    [14]

    Sahrai M, Tajalli H, Kapale K T, Zubairy M S 2005 Phys. Rev. A 72 013820

    [15]

    Sahrai M, Tajalli H 2013 JOSA B 30 512

    [16]

    Rahmatullah, Qamar S 2013 Phys. Rev. A 88 013846

    [17]

    Ivanov V S, Rozhdestvensky Y V, Suominen K A 2014 Phys. Rev. A 90 063802

    [18]

    Ivanov V, Rozhdestvensky Y 2010 Phys. Rev. A 81 033809

    [19]

    Qi Y H, Zhou F X, Huang T, Niu Y P, Gong S Q 2012 J. Mod. Opt. 59 1092

    [20]

    Wan R G, Kou J, Jiang L, Jiang Y, Gao J Y 2011 JOSA B 28 622

    [21]

    Jin L L, Sun H, Niu Y P, Jin S Q, Gong S Q 2009 J. Mod. Opt. 56 805

    [22]

    Scully M O, Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) p225

    [23]

    Liu C P, Gong S Q, Cheng D C, Fan X J, Xu Z Z 2006 Phys. Rev. A 73 025801

    [24]

    Ghafoor F 2011 Phys.Rev.A 84 063849

  • [1] 王丹, 郭瑞翔, 戴玉鹏, 周海涛. 基于简并四波混频的双信道双频段增益谱. 物理学报, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
    [2] 孟腾飞, 田剑锋, 周瑶瑶. 准Λ型四能级系统选择反射光谱. 物理学报, 2020, 69(1): 014206. doi: 10.7498/aps.69.20191099
    [3] 陈志鹏, 於文静, 高雷. 非局域颗粒复合介质的相干完美吸收效应. 物理学报, 2019, 68(5): 051101. doi: 10.7498/aps.68.20182108
    [4] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [5] 鲁万成, 张庆礼, 罗建乔, 丁守军, 窦仁勤, 彭方, 张会丽, 王小飞, 孙贵花, 孙敦陆. Nd:YSAG单晶的光谱和激光性能. 物理学报, 2017, 66(15): 154204. doi: 10.7498/aps.66.154204
    [6] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [7] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [8] 徐天宇, 何峰. H2+在阿秒以及双色飞秒激光脉冲中解离时电子位置的相干控制. 物理学报, 2013, 62(6): 068201. doi: 10.7498/aps.62.068201
    [9] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频 . 物理学报, 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [10] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [11] 苏家妮, 邓文武, 李高翔. 四能级原子介质中Goos-Hnchen位移的相干控制. 物理学报, 2012, 61(14): 144210. doi: 10.7498/aps.61.144210
    [12] 王红霞, 周战荣, 张清华, 马进, 刘代志. 纳米碳纤维红外消光数值计算. 物理学报, 2010, 59(9): 6111-6117. doi: 10.7498/aps.59.6111
    [13] 张燕萍, 赵晓鹏, 保石, 罗春荣. 基于阻抗匹配条件的树枝状超材料吸收器. 物理学报, 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078
    [14] 聂志强, 李 岭, 姜 彤, 沈磊剑, 李沛哲, 甘琛利, 宋建平, 张彦鹏, 卢克清. 倒V形四能级亚飞秒极化拍的三光子吸收和色散. 物理学报, 2008, 57(1): 243-251. doi: 10.7498/aps.57.243
    [15] 吴师岗, 邵建达, 范正修. 负离子元素杂质破坏模型. 物理学报, 2006, 55(4): 1987-1990. doi: 10.7498/aps.55.1987
    [16] 尚淑珍, 邵建达, 沈 健, 易 葵, 范正修. 退火对电子束热蒸发193nm Al2O3/MgF2反射膜性能的影响. 物理学报, 2006, 55(5): 2639-2643. doi: 10.7498/aps.55.2639
    [17] 马锡英, 施维林. 纳米CdS-磺化聚苯胺(SPAn)多层复合膜的光学特性研究. 物理学报, 2003, 52(4): 1034-1038. doi: 10.7498/aps.52.1034
    [18] 郭红, 李高翔, 彭金生. 双通道离化系统的相干控制. 物理学报, 2002, 51(11): 2517-2523. doi: 10.7498/aps.51.2517
    [19] 屈卫星, 徐至展. 二阶离化对缀饰态稳定性的影响. 物理学报, 1993, 42(3): 373-378. doi: 10.7498/aps.42.373
    [20] 许伯威, 曾祺. 氢原子相干态. 物理学报, 1991, 40(8): 1212-1216. doi: 10.7498/aps.40.1212
计量
  • 文章访问数:  2679
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-02
  • 修回日期:  2015-01-06
  • 刊出日期:  2015-07-05

基于量子相干控制吸收的准Λ型四能级原子局域化研究

  • 1. 江南大学理学院, 无锡 214122
    基金项目: 国家自然科学基金(批准号:60875084,61273017)、中央高校基本科研业务费专项资金(批准号:JUSRP21118,JUSRP211A24)和教育部留学回国人员科研启动基金资助的课题.

摘要: 提出了一种基于量子相干控制吸收的对准Λ型四能级原子进行二维局域化方案. 利用密度矩阵微扰理论, 得到了确定原子空间位置信息的筛选函数解析表达式. 在缀饰态表象中, 分析了在相干控制场作用下原子初始状态对原子局域的影响. 数值模拟了控制场参量对原子局域化结果的影响. 研究发现原子局域化结果与初始时刻在控制场作用下原子在下能态的布局、下能级间产生的极化密切相关; 不管探测场与耦合场是否满足电磁感应透明配置条件, 通过改变控制场中的行波场的振幅和探测场的失谐量, 均可实现高精度原子局域化, 在亚波长范围内测量到原子的概率达到100%.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回