搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

243 nm稳频窄线宽半导体激光器

侯磊 韩海年 张龙 张金伟 李德华 魏志义

引用本文:
Citation:

243 nm稳频窄线宽半导体激光器

侯磊, 韩海年, 张龙, 张金伟, 李德华, 魏志义

A narrow linewidth diode laser at 243 nm

Hou Lei, Han Hai-Nian, Zhang Long, Zhang Jin-Wei, Li De-Hua, Wei Zhi-Yi
PDF
导出引用
  • 243 nm是氢原子1S-2S能级跃迁光谱波长. 本文利用Pound-Drever-Hall稳频技术将972 nm光栅反馈外腔半导体激光稳定在一个高精细度低膨胀系数的超稳法布里-珀罗腔上, 通过锥形放大器放大和腔内两次共振增强倍频得到243 nm激光, 最终实现用于探测氢原子1S-2S双光子跃迁的243 nm窄线宽激光.
    The two-photon spectroscopy of 1S-2S transition in atomic hydrogen needs a narrow linewidth laser at the wavelength of 243 nm. In order to reduce the linewidth to several tens hertz level, a free operation CW ECDL 972 nm laser has been locked to a high fineness ultralow expansion reference cavity by using the Pound-Drever-Hall technique. And the part of 972 nm laser output is set into the tapered amplifier and the two enhanced doubling frequency stages to obtain the output of purple light at 243 nm. It is estimated that such a narrow linewidth laser system at 243 nm can be used well in the detection of the 1S-2S transition of hydrogen.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB821304)、国家自然科学基金(批准号:11078022,61378040)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB821304), and the National Natural Sciences Foundation of China (Grant Nos. 11078022, 61378040).
    [1]

    Schmidt-Kaler F, Leibfried D, Weitz M, Hansch T W 1993 Phys. Rev. Lett. 70 2261

    [2]

    Parthey C G, Matveev A, Alnis J, Pohl R, Udem T, Jentschura U D, Kolachevsky N, Hansch T W 2010 Phys. Rev. Lett. 104 233001

    [3]

    Huber A, Gross B, Weitz M, Hansch T W 1998 Phys. Rev. A 58 R2631

    [4]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hansch T W 2011 Phys. Rev. Lett. 107 203001

    [5]

    Matveev A, Parthey C G, Predehl K, Alnis J, Beyer A, Holzwarth R, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Grosche G, Terra O, Legero T, Schnatz H, Weyers S, Altschul B, Hansch T W 2013 Phys. Rev. Lett. 110 230801

    [6]

    Kolachevsky N, Fendel P, Karshenboim S G, Hansch T W 2004 Phys. Rev. A 70 062503

    [7]

    Kolachevsky N, Fischer M, Karshenboim S G, Hansch T W 2004 Phys. Rev. Lett. 92 4

    [8]

    Udem T, Huber A, Gross B, Reichert J, Prevedelli M, Weitz M, Hansch T W 1997 Phys. Rev. Lett. 79 2646

    [9]

    DeBeauvoir B, Nez F, Julien L, Cagnac B, Biraben F, Touahri D, Hilico L, Acef O, Clairon A, Zondy J J 1997 Phys. Rev. Lett. 78 440

    [10]

    Weitz M, Schmidt-Kaler F, Hansch T W 1992 Phys. Rev. Lett. 68 1120

    [11]

    Weitz M, Huber A, Schmidt-Kaler F, Leibfried D, Hansch T W 1994 Phys. Rev. Lett. 72 328

    [12]

    Huber A, Udem T, Gross B, Reichert J, Kourogi M, Pachucki K, Weitz M, Hansch T W 1998 Phys. Rev. Lett. 80 468

    [13]

    Hnsch T, Lee S, Wallenstein R, Wieman C 1975 Phys. Rev. Lett. 34 307

    [14]

    Young B C, Cruz F C, Itano W M, Bergquist J C 1999 Phys. Rev. Lett. 82 3799

    [15]

    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nature Photon. 6 687

    [16]

    Webster S A, Oxborrow M, Gill P 2004 Opt. Lett. 29 1497

    [17]

    Notcutt M, Ma L S, Ye J, Hall J L 2005 Opt. Lett. 30 1815

    [18]

    Stoehr H, Mensing E, Helmcke J, Sterr U 2006 Opt. Lett. 31 736

    [19]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [20]

    Kolachevsky N, Alnis J, Bergeson S D, Hansch T W 2006 Phys. Rev. A 73 021801

    [21]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [22]

    Alnis J, Matveev A, Kolachevsky N, Wilken T, Holzwarth R, Hansch T W 2008 Eur. Phys. J. Special Topics 163 89

    [23]

    Lawrence M J, Willke B, Husman M E, Gustafson E K, Byer R L 1999 J. Opt. Soc. Am. B 16 523

  • [1]

    Schmidt-Kaler F, Leibfried D, Weitz M, Hansch T W 1993 Phys. Rev. Lett. 70 2261

    [2]

    Parthey C G, Matveev A, Alnis J, Pohl R, Udem T, Jentschura U D, Kolachevsky N, Hansch T W 2010 Phys. Rev. Lett. 104 233001

    [3]

    Huber A, Gross B, Weitz M, Hansch T W 1998 Phys. Rev. A 58 R2631

    [4]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hansch T W 2011 Phys. Rev. Lett. 107 203001

    [5]

    Matveev A, Parthey C G, Predehl K, Alnis J, Beyer A, Holzwarth R, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Grosche G, Terra O, Legero T, Schnatz H, Weyers S, Altschul B, Hansch T W 2013 Phys. Rev. Lett. 110 230801

    [6]

    Kolachevsky N, Fendel P, Karshenboim S G, Hansch T W 2004 Phys. Rev. A 70 062503

    [7]

    Kolachevsky N, Fischer M, Karshenboim S G, Hansch T W 2004 Phys. Rev. Lett. 92 4

    [8]

    Udem T, Huber A, Gross B, Reichert J, Prevedelli M, Weitz M, Hansch T W 1997 Phys. Rev. Lett. 79 2646

    [9]

    DeBeauvoir B, Nez F, Julien L, Cagnac B, Biraben F, Touahri D, Hilico L, Acef O, Clairon A, Zondy J J 1997 Phys. Rev. Lett. 78 440

    [10]

    Weitz M, Schmidt-Kaler F, Hansch T W 1992 Phys. Rev. Lett. 68 1120

    [11]

    Weitz M, Huber A, Schmidt-Kaler F, Leibfried D, Hansch T W 1994 Phys. Rev. Lett. 72 328

    [12]

    Huber A, Udem T, Gross B, Reichert J, Kourogi M, Pachucki K, Weitz M, Hansch T W 1998 Phys. Rev. Lett. 80 468

    [13]

    Hnsch T, Lee S, Wallenstein R, Wieman C 1975 Phys. Rev. Lett. 34 307

    [14]

    Young B C, Cruz F C, Itano W M, Bergquist J C 1999 Phys. Rev. Lett. 82 3799

    [15]

    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nature Photon. 6 687

    [16]

    Webster S A, Oxborrow M, Gill P 2004 Opt. Lett. 29 1497

    [17]

    Notcutt M, Ma L S, Ye J, Hall J L 2005 Opt. Lett. 30 1815

    [18]

    Stoehr H, Mensing E, Helmcke J, Sterr U 2006 Opt. Lett. 31 736

    [19]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [20]

    Kolachevsky N, Alnis J, Bergeson S D, Hansch T W 2006 Phys. Rev. A 73 021801

    [21]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [22]

    Alnis J, Matveev A, Kolachevsky N, Wilken T, Holzwarth R, Hansch T W 2008 Eur. Phys. J. Special Topics 163 89

    [23]

    Lawrence M J, Willke B, Husman M E, Gustafson E K, Byer R L 1999 J. Opt. Soc. Am. B 16 523

  • [1] 戈杉杉, 王腾午, 戈静怡, 周沛, 李念强. 混沌光注入半导体激光器中极端事件的演变. 物理学报, 2023, 72(16): 164201. doi: 10.7498/aps.72.20230759
    [2] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [3] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [4] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [5] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, 2012, 61(1): 014201. doi: 10.7498/aps.61.014201
    [6] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [7] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [8] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [9] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [10] 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究. 物理学报, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [11] 张振国, 郜峰利, 郭树旭, 李雪妍, 于思瑶. 一种估计半导体激光器1/f噪声参数的新方法. 物理学报, 2009, 58(4): 2772-2775. doi: 10.7498/aps.58.2772
    [12] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [13] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [14] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [15] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [16] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [17] 于海鹰, 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [18] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [19] 王安帮, 王云才, 郭文阁, 张首刚. 有效压缩增益开关DFB激光器光谱线宽的注入时间窗口. 物理学报, 2007, 56(1): 285-290. doi: 10.7498/aps.56.285
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  6756
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-08
  • 修回日期:  2015-01-05
  • 刊出日期:  2015-07-05

/

返回文章
返回