搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速线性光采样用被动锁模光纤激光器重复频率优化

彭汉 刘彬 付松年 张敏明 刘德明

引用本文:
Citation:

高速线性光采样用被动锁模光纤激光器重复频率优化

彭汉, 刘彬, 付松年, 张敏明, 刘德明

Repetition rate optimization of passively mode-locked fiber laser for high-speed linear optical sampling

Peng Han, Liu Bin, Fu Song-Nian, Zhang Min-Ming, Liu De-Ming
PDF
导出引用
  • 线性光采样是一种测量基于先进调制码型的高速光信号的有效手段, 而被动锁模光纤激光器是其实施所需的关键组件. 本文在介绍线性光采样工作原理的基础上, 首次分析得到被动锁模光纤激光器重复频率与待测信号光线宽的约束关系, 对于正交相移键控(QPSK)信号, 当信号光线宽与采样光脉冲重复频率的比值小于1.5×10-3 时, 高速信号的相位噪声对线性光采样带来的损伤可以忽略不计. 利用95.984 MHz重复频率的被动锁模光纤激光器对线宽为100 kHz速率为28 Gbaud的QPSK信号开展相关实验, 通过标准数字相干接收算法可以得到与传统高速示波器相同的星座图, 理论分析与实验结果完全符合. 这一研究结果有助于线性光采样用被动锁模光纤激光器的优化设计.
    Optical fiber communication systems are going to adopt the use of advanced modulation formats. It is thus important to develop measurement techniques and solutions capable of quantifying such signals. Linear optical sampling is an effective technique to characterize the quality of an advanced modulation format for high-speed optical signal with high fidelity, while the passively mode-locked fiber laser is an enabling module to implement the linear optical sampling. In this paper, we obtain a trade-off relationship between the repetition rate of passively mode-locked fiber laser and the linewidth of high-speed signal under test, after the introduction of operation principle for linear optical sampling. It is found that, for the quadrature phase shift keying (QPSK) signal, when the ratio of the linewidth of the signal under test to the repetition rate of passively mode-locked fiber laser is less than 1.5×10-3, the linear optical sampling-induced impairments can be ignored when there occurs phase noise. Therefore, the phase estimation can be successfully made by using the Viterbi-Viterbi algorithm applied to the block of samples corresponding to the modulation format phase states. Next, we use an optical sampling pulse with a repetition rate of 95.984 MHz, and carry out the optical linear sampling to a 28 Gbaud QPSK signal with a linewidth of 100 kHz. The error vector magnitude (EVM) has long been a commonly used parameter for quantifying the quality of advanced modulation signals. Using the standard coherent detection algorithm, we can successfully recover the constellation with the error vector magnitude (EVM) error less than 1%. Theoretical investigations agree well with the experimental characterization. Such a conclusion is helpful to optimize the design of passively mode-locked fiber laser for optical sampling application.
    • 基金项目: 国家重大科学设备仪器开发专项(批准号:2013YQ16048702)和国家自然科学基金(批准号:61275069)资助的课题.
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project (Grant No. 2013YQ16048702), and the National Natural Science Foundation of China (Grant No. 61275069).
    [1]

    Buchali F, Schuh K, Schmalen L, Idler W, Lach E, Leven A 2013 Optical Fiber Communication Conference Los Angeles, March 19-21, 2013 OTh4E. 3

    [2]

    Ke J H, Gao Y, Cartledge J C 2014 Opt. Express 22 71

    [3]

    Raybon G, Adamiecki A, Winzer P, Xie C, Konczykowska A, Jorge F, Dupuy J, Buhl L, Chandrashekhar S, Draving S, Grove M, Rush K 2013 Optical Fiber Communication Conference Los Angeles, September 23-26, 2013 PDP5A. 5

    [4]

    Raybon G, Adamiecki A, Winzer P J, Montoliu M, Randel S, UmbachA, Margraf M, Stephan J, Draving S, Grove M, Rush K 2013 European Conference and Exposition on Optical Communications London, September 23-26, 2013 PD2. D. 3

    [5]

    Sköld M, Raybon G, Adamiecki A L, WinzerP J, Sunnerud H, Westlund M, Konczykowska A, Jorge F, Dupuy J, Buhl L, Andrekson P 2013 Photon. Technol. Lett. 25 504

    [6]

    Sköld M, Westlund M, Sunnerud H, Andrekson P 2009 J. Lightw. Technol. 27 3662

    [7]

    Sköld M, Sunnerud H, Westlund M, Andrekson P 2011 European Conference and Exposition on Optical Communications Geneva, September 19-21, 2011 Th. 13. B. 3

    [8]

    Zhang Jianguo, Liu Yuan shan 2011 Acta Photonica Sinica 40 487 (in Chinese) [张建国, 刘元山 2011 光子学报 40 487]

    [9]

    Sunnerud H, Skold M, Westlund M, Andrekson P 2012 J. Lightw. Technol. 30 3747

    [10]

    Eliasson H, Johannisson P, Sunnerud H, Westlund M, Karlsson M, Andrekson P 2013 European Conference and Exposition on Optical Communications London, September 23-26, 2013 Tu. 3. C. 2

    [11]

    Okamoto T, Ito F 2014 J. Lightw. Technol. 32 3119

    [12]

    Fermann M E, Hartl I 2009 J. Sel. Topics Quantum Electron. 15 191

    [13]

    Dong X Z, Yu Z H, Tian J R, Li Y L, Kou Z Y, Hu M T, Song Y R 2014 Acta Phys. Sin. 63 034202 (in Chinese) [董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉 2014 物理学报 63 034202]

    [14]

    Westlund M, Sunnerud H, Karlsson M, Andrekson P 2005 J. Lightw. Technol. 23 1088

    [15]

    Westlund M, Sunnerud H, Karlsson M, Andrekson P 2003 Optical Fiber Communication Conference Atlanta, March 25-28, 2003 WP6

    [16]

    Dorrer C, Kilper D C, Stuart H R, Raybon G, Raymer M G 2003 Photon. Technol. Lett. 15 1746

    [17]

    Dorrer C, Doerr C R, Kang I, Ryf R, Leuthold J, Winzer P J 2005 J. Lightw. Technol. 23 178

    [18]

    Dorrer C 2006 J. Lightw. Technol. 24 313

    [19]

    Seimetz M 2008 Optical Fiber Communication Conference San Diego, February 26-28, 2008 OTuM2

    [20]

    ViterbiA 1983 Transactions on Information Theory 29 543

    [21]

    JiangK, Fu S N, Shum P, Lin C 2010 Photon. Technol. Lett. 22 754

    [22]

    Wang Q Q, Chen T, Zhang B, Li M, Lu Y, Chen K P 2013 Appl. Phys. Lett. 102 131117

  • [1]

    Buchali F, Schuh K, Schmalen L, Idler W, Lach E, Leven A 2013 Optical Fiber Communication Conference Los Angeles, March 19-21, 2013 OTh4E. 3

    [2]

    Ke J H, Gao Y, Cartledge J C 2014 Opt. Express 22 71

    [3]

    Raybon G, Adamiecki A, Winzer P, Xie C, Konczykowska A, Jorge F, Dupuy J, Buhl L, Chandrashekhar S, Draving S, Grove M, Rush K 2013 Optical Fiber Communication Conference Los Angeles, September 23-26, 2013 PDP5A. 5

    [4]

    Raybon G, Adamiecki A, Winzer P J, Montoliu M, Randel S, UmbachA, Margraf M, Stephan J, Draving S, Grove M, Rush K 2013 European Conference and Exposition on Optical Communications London, September 23-26, 2013 PD2. D. 3

    [5]

    Sköld M, Raybon G, Adamiecki A L, WinzerP J, Sunnerud H, Westlund M, Konczykowska A, Jorge F, Dupuy J, Buhl L, Andrekson P 2013 Photon. Technol. Lett. 25 504

    [6]

    Sköld M, Westlund M, Sunnerud H, Andrekson P 2009 J. Lightw. Technol. 27 3662

    [7]

    Sköld M, Sunnerud H, Westlund M, Andrekson P 2011 European Conference and Exposition on Optical Communications Geneva, September 19-21, 2011 Th. 13. B. 3

    [8]

    Zhang Jianguo, Liu Yuan shan 2011 Acta Photonica Sinica 40 487 (in Chinese) [张建国, 刘元山 2011 光子学报 40 487]

    [9]

    Sunnerud H, Skold M, Westlund M, Andrekson P 2012 J. Lightw. Technol. 30 3747

    [10]

    Eliasson H, Johannisson P, Sunnerud H, Westlund M, Karlsson M, Andrekson P 2013 European Conference and Exposition on Optical Communications London, September 23-26, 2013 Tu. 3. C. 2

    [11]

    Okamoto T, Ito F 2014 J. Lightw. Technol. 32 3119

    [12]

    Fermann M E, Hartl I 2009 J. Sel. Topics Quantum Electron. 15 191

    [13]

    Dong X Z, Yu Z H, Tian J R, Li Y L, Kou Z Y, Hu M T, Song Y R 2014 Acta Phys. Sin. 63 034202 (in Chinese) [董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉 2014 物理学报 63 034202]

    [14]

    Westlund M, Sunnerud H, Karlsson M, Andrekson P 2005 J. Lightw. Technol. 23 1088

    [15]

    Westlund M, Sunnerud H, Karlsson M, Andrekson P 2003 Optical Fiber Communication Conference Atlanta, March 25-28, 2003 WP6

    [16]

    Dorrer C, Kilper D C, Stuart H R, Raybon G, Raymer M G 2003 Photon. Technol. Lett. 15 1746

    [17]

    Dorrer C, Doerr C R, Kang I, Ryf R, Leuthold J, Winzer P J 2005 J. Lightw. Technol. 23 178

    [18]

    Dorrer C 2006 J. Lightw. Technol. 24 313

    [19]

    Seimetz M 2008 Optical Fiber Communication Conference San Diego, February 26-28, 2008 OTuM2

    [20]

    ViterbiA 1983 Transactions on Information Theory 29 543

    [21]

    JiangK, Fu S N, Shum P, Lin C 2010 Photon. Technol. Lett. 22 754

    [22]

    Wang Q Q, Chen T, Zhang B, Li M, Lu Y, Chen K P 2013 Appl. Phys. Lett. 102 131117

  • [1] 俞强, 郭琨, 陈捷, 王涛, 汪进, 史鑫尧, 吴坚, 张凯, 周朴. MnPS3可饱和吸收体被动锁模掺铒光纤激光器双波长激光. 物理学报, 2020, 69(18): 184208. doi: 10.7498/aps.69.20200342
    [2] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [3] 赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才. 利用混沌激光脉冲在线实时产生7 Gbit/s物理随机数. 物理学报, 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [4] 孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才. 基于混沌激光的无后处理多位物理随机数高速产生技术研究. 物理学报, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [5] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [6] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [7] 江镭, 李璞, 张建忠, 孙媛媛, 胡兵, 王云才. 基于太赫兹光非对称解复用器结构的低开关能量、高线性度全光采样门实验研究. 物理学报, 2015, 64(15): 154213. doi: 10.7498/aps.64.154213
    [8] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究. 物理学报, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [9] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [10] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, 2013, 62(10): 104210. doi: 10.7498/aps.62.104210
    [11] 施健康, 陆文, 严卫, 艾未华. 星载极化相关型全极化微波辐射计天线交叉极化校正技术(I): 天线温度方程推导. 物理学报, 2013, 62(7): 078402. doi: 10.7498/aps.62.078402
    [12] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器. 物理学报, 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [13] 刘扬正, 林长圣, 李心朝. 新的具有光滑二次函数混沌系统的构建与实现. 物理学报, 2011, 60(6): 060507. doi: 10.7498/aps.60.060507
    [14] 刘扬正, 林长圣, 李心朝. 切换统一混沌系统族. 物理学报, 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [15] 张朝霞, 禹思敏. 基于数字信号处理器的语音无线混沌通信——系统设计与硬件实现. 物理学报, 2010, 59(5): 3017-3026. doi: 10.7498/aps.59.3017
    [16] 石涛, 颜辉, 杨国卿, 王谨, 詹明生. 数字信号在原子芯片中的应用. 物理学报, 2009, 58(3): 1586-1589. doi: 10.7498/aps.58.1586
    [17] 王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚. 离子注入GaAs实现双包层掺镱光纤激光器被动调Q锁模. 物理学报, 2004, 53(6): 1810-1814. doi: 10.7498/aps.53.1810
    [18] 黄志坚, 孙军强, 黄德修. 快速与慢速饱和吸收体被动锁模掺铒光纤激光器的理论分析. 物理学报, 1998, 47(1): 9-18. doi: 10.7498/aps.47.9
    [19] 王清月, 沈家强, 许键, 向望华, 张钊, 章若冰. 非腔长匹配相干叠加脉冲锁模激光器的实验研究. 物理学报, 1994, 43(8): 1289-1294. doi: 10.7498/aps.43.1289
    [20] 朱振和, 霍崇儒. 被动锁模激光器涨落模型的改进. 物理学报, 1981, 30(2): 178-188. doi: 10.7498/aps.30.178
计量
  • 文章访问数:  5004
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-24
  • 修回日期:  2015-01-08
  • 刊出日期:  2015-07-05

/

返回文章
返回