搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子点阵列几何构型对电子跃迁输运的调控

王博维 商姊萌 韩伟华

引用本文:
Citation:

量子点阵列几何构型对电子跃迁输运的调控

王博维, 商姊萌, 韩伟华

Transport of electron hopping regulated by the geometric configuration of quantum-dot arrays

WANG Bowei, SHANG Zimeng, HAN Weihua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 硅基纳米结构中杂质原子量子点阵列因其在量子计算、量子模拟等领域的巨大应用潜力而备受关注。基于线形、环形和网状等不同几何结构排列的量子点阵列因拓扑特性的差异以及长程库仑相互作用的影响,展现出各异的电子输运特性。同时,通过调控电子隧穿和波函数相位相干性,可以深刻影响着电子的跃迁输运行为。本文致力于构建硅基纳米结构中杂质原子量子点阵列的通用Fermi-Hubbard模型,探讨量子点分布的几何构型对电子的跃迁输运行为的调控机制。特别以环形量子点阵列为例,深入分析了不同几何结构和电子跃迁模式下的电子添加能谱与电导特性,揭示了位间电子库仑排斥能、电子-离子实长程库仑吸引能与量子点耦合对电子跃迁行为的影响,为理解量子点阵列几何分布对跳跃电子输运特性的调控机制提供了基本理论框架。
    Dopant-induced quantum dot arrays in silicon-based nanostructures have attracted much attention due to their great application potential in fields such as quantum computing and quantum simulation. When quantum dots are arranged in different geometric configurations such as linear, annular, or grid shapes, the differences in their inherent topological properties will lead to significantly different spatial distribution of the Coulomb interaction potential. The potential field distribution directly affects the phase coherence of electron wavefunctions, thereby regulating the dynamic behaviors of electrons such as electron tunneling and hopping between quantum dots, thereby profoundly influencing the electron transport properties in the system.
    Our study aims to establish a basic theoretical framework to clarify the regulation mechanism of quantum dot geometric configurations on electron hopping transport. For this purpose, we construct a universal Fermi-Hubbard model for silicon-based dopant-induced quantum dot arrays. The model defines the distance between quantum dots through an effective Euclidean distance matrix (D), which uniquely determines the geometric shape of the array, and defines the allowed electron hopping modes through an adjacency matrix (A). Using the framework and exact diagonalization method, we perform detailed numerical simulations on the electron transport properties in the conventional unit cell of two-dimensional ordered distribution dopant-induced quantum dot arrays. Generally, the primitive unit of a two-dimensional orderly distributed dopant-induced quantum dot array is a regular polygon that satisfies specific translational and rotational symmetries. We thereby refer to the quantum dot arrays distributed according to regular polygons as annular arrays.
    The geometric features of annular quantum dot arrays and the electron hopping modes including nearest-neighbor hopping (NNH), next-nearest-neighbor hopping (NNNH) and long-range hopping (LRH), exhibit significant regulation on the electron addition energy and quantum conductance. The regulation arises from interactions of key energy parameters, including coupling strength (t), on-site Coulomb repulsion (U) and inter-site Coulomb repulsion (W). In the electron addition energy spectrum, such regulation manifests in two aspects, energy band broadening and Coulomb gap size. Band broadening is co-regulated by t and W. Under weak coupling conditions, the broadening Δt induced by coupling strength is proportional to t, with its proportional coefficient increasing with the number of hopping paths (LRH > NNNH > NNH). The broadening ΔW caused by inter-site Coulomb repulsion is proportional to W, with the proportional coefficient being β, which is a geometry-dependent correlation broadening coefficient. In multi-site annular arrays, β exhibits a logarithmic relationship with the site number N. The size of Coulomb gap is co-influenced by U, t and W. The competition between U and W determines the electron configuration mode (dominated by single-electron occupation of sites or double-electrons occupation of spaced sites), with a critical value α for electron configuration reconstruction that causes a change in electron configuration across the threshold. When U/W > α, single-electron occupation dominates, and the gap is determined by the competition between U and t; when U/W < α, double-electrons occupation dominates, the gap expands under the influence of W, accompanied by the formation of sub-bands.
    In the quantum conductance spectrum, regulation is reflected in the distribution of conductance peak intensity. Geometric characteristics significantly affect peak intensity distribution. Linear arrays exhibit concentrated peak intensities due to edge states formed by open boundaries. While annular arrays with periodic boundaries and no edge states, show more uniform peak distributions. Additionally, in annular arrays, the electron transport direction is non-collinear with the inter-site repulsion direction, endowing them with stronger robustness against transport inhibition induced by W. The influence of hopping modes is twofold. More hopping paths (LRH > NNNH > NNH) result in more non-zero hopping matrix elements,which causes higher average conductance. Meanwhile, hopping paths affect the phase coherence of wavefunctions, modulating the intensity of individual conductance peaks and forming distinct distribution.
    In conclusion, we establish a theoretical framework to clarify the physical mechanism, in which the geometric configurations and electron hopping modes of silicon-based dopant-induced quantum dot arrays regulate electron transport properties through synergistic interactions with key energy parameters (t, U, W). Electron addition energy spectra and quantum conductance spectra reveal the regulatory rules of these factors on electron transport behaviors, providing a theoretical guidance for the optimal design of silicon-based quantum devices.
  • [1]

    Prati E, Hori M, Guagliardo F, Ferrari G, Shinada T 2012 Nature Nanotechnology 7 443

    [2]

    Wang X, Khatami E, Fei F, Wyrick J, Namboodiri P, Kashid R, Rigosi A F, Bryant G, Silver R 2022 Nature Communications 13 6824

    [3]

    Hubbard J 1963 Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 276 238

    [4]

    Beenakker C W J 1991 Physical Review B 44 1646

    [5]

    Chen G, Klimeck G, Datta S, Chen G, Goddard W A 1994 Physical Review B 50 8035

    [6]

    Yu Z, Johnson A, Heinzel T 1998 Physical Review B 58 13830

    [7]

    Le N H, Fisher A J, Ginossar E 2017 Physical Review B 96 245406

    [8]

    Wang S-S, Li K, Dai Y-M, Wang H-H, Zhang Y-C, Zhang Y-Y 2023 Scientific Reports 13 5763

    [9]

    Devi S, Ahluwalia P K, Chand S 2020 Pramana 94 60

    [10]

    Gamble J K, Jacobson N T, Nielsen E, Baczewski A D, Moussa J E, Montaño I, Muller R P 2015 Physical Review B 91 235318

    [11]

    Hu X, Koiller B, Das Sarma S 2005 Physical Review B 71 235332

    [12]

    Weber B, Mahapatra S, Ryu H, Lee S, Fuhrer A, Reusch T C G, Thompson D L, Lee W C T, Klimeck G, Hollenberg L C L, Simmons M Y 2012 Science 335 64

    [13]

    Voisin B, Bocquel J, Tankasala A, Usman M, Salfi J, Rahman R, Simmons M, Hollenberg L, Rogge S 2020 Nature communications 11 6124

    [14]

    Slater J C, Koster G F 1954 Physical review 94 1498

    [15]

    Grzybowski P R, Chhajlany R W 2012 physica status solidi (b) 249 2231

    [16]

    Janod E, Tranchant J, Corraze B, Querré M, Stoliar P, Rozenberg M, Cren T, Roditchev D, Phuoc V T, Besland M P 2015 Advanced Functional Materials 25 6287

    [17]

    Morgan N Y, Abusch-Magder D, Kastner M A, Takahashi Y, Tamura H, Murase K 2001 Journal of Applied Physics 89 410

    [18]

    Cha M-H, Hwang J 2020 Scientific Reports 10 16701

    [19]

    Ochoa M A, Liu K, Zieliński M, Bryant G 2024 Physical Review B 109 205412

    [20]

    Gerace D, Pavarini E, Andreani L C 2002 Physical Review B 65 155331

    [21]

    Yi K S, Trivedi K, Floresca H C, Yuk H, Hu W, Kim M J 2011 Nano Letters 11 5465

  • [1] 刘彪, 周晓凡, 陈刚, 贾锁堂. 交错跃迁Hofstadter梯子的量子流相. 物理学报, doi: 10.7498/aps.69.20191964
    [2] 孟腾飞, 田剑锋, 周瑶瑶. 准Λ型四能级系统选择反射光谱. 物理学报, doi: 10.7498/aps.69.20191099
    [3] 李群, 屈媛, 班士良. 缓冲层对量子阱二能级系统中电子子带间跃迁光吸收的影响. 物理学报, doi: 10.7498/aps.66.077301
    [4] 胡锐, 范志强, 张振华. 三角形石墨烯量子点阵列的磁电子学特性和磁输运性质. 物理学报, doi: 10.7498/aps.66.138501
    [5] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, doi: 10.7498/aps.64.127301
    [6] 罗晓华. Schrödinger方程的一般解与超晶格多量子阱的电子跃迁. 物理学报, doi: 10.7498/aps.63.017302
    [7] 任学藻, 贺树, 丛红璐, 王旭文. 两格点两电子Hubbard-Holstein模型极化子的量子纠缠特性. 物理学报, doi: 10.7498/aps.61.124207
    [8] 伍冬兰, 谢安东, 万慧军, 阮文. 聚合型硼氢化物(BH3)n(n=13)的几何结构与光谱的研究. 物理学报, doi: 10.7498/aps.60.103101
    [9] 杨晓杰, 王 青, 马文全, 陈良惠. InGaAs/GaAs量子点阵列中的能级计算. 物理学报, doi: 10.7498/aps.56.5429
    [10] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, doi: 10.7498/aps.54.307
    [11] 阎世英, 马美仲, 朱正和. B2H6分子的几何构型. 物理学报, doi: 10.7498/aps.54.3106
    [12] 徐秀莲, 王锋, 张丰收, 曾祥华. 几何构型不同的Na团簇碰撞动力学研究. 物理学报, doi: 10.7498/aps.51.31
    [13] 姜振益, 许小红, 武海顺, 张富强, 金志浩. SiC多型体几何结构与电子结构研究. 物理学报, doi: 10.7498/aps.51.1586
    [14] 沈汉鑫, 朱梓忠, 黄美纯. NiAl的几何与电子结构. 物理学报, doi: 10.7498/aps.50.95
    [15] 汪蓉, 朱正和, 杨传路. C42+的几何构型和Jahn Teller效应. 物理学报, doi: 10.7498/aps.50.1675
    [16] 万 钧, 叶 令, 王 迅. Si中掺Er的原子构型与电子特性. 物理学报, doi: 10.7498/aps.47.652
    [17] 赖云忠, 李卫东, 梁九卿. Kerr介质中电子的绝热跃迁转移现象和光场的量子统计性质. 物理学报, doi: 10.7498/aps.47.1489
    [18] 魏国柱. Hubbard-Hirsch模型中的电子相关效应. 物理学报, doi: 10.7498/aps.43.1828
    [19] 杨奇斌, 叶恒强. 点阵平面几何学. 物理学报, doi: 10.7498/aps.29.1033
    [20] 黄昆. 晶体中电子跃迁的理论. 物理学报, doi: 10.7498/aps.14.191
计量
  • 文章访问数:  57
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-12

/

返回文章
返回